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ABSTRACT

Background: In survival analysis studies the interest is time taken to experience an event of
interest. However, the probability of encountering the event of interest is commonly altered
in studies where subjects experience an event other than that of interest. The standard
survival time analysis methods, such as Kaplan-Meier method and the standard Cox model,
fall short of differentiating different causes when competing risks are present. This is
overcome by using statistical models that account for competing risks. The aim of the study
was to compare and discuss estimates from nonparametric Cumulative Incidence Function,
cause-specific hazards and subdistribution hazards in modeling time a patient suffering from
infectious diseases spent in hospital until discharged. Death in hospital was identified as a

competing risk.

Methods: The nonparametric CIF was applied to the data to estimate the probability that a
death or hospital discharge has occurred before a given day. In addition, the cause-specific
hazards modeled the effect of HIV status, age and patient’s sex in relation to death or being
discharged from hospital. The subdistribution hazards which does not assume independence
between events was also used to compare results with the cause-specific hazards. Test of

assumptions and model diagnostics followed.

Results: Of 829 patients suffering from infectious diseases, 438 (52.4%) were females.452
(54.5%) patients were HIV positive, 116 (14.0%) were HIV negative and 261 (31.5%) had
unknown HIV status. The nonparametric CIF, like the rest of models, showed that the HIV
positive had a lower probability of being discharged in hospital than the HIV negative. The
cause-specific hazard of hospital discharge for males was 0.73 (p<0.001). This meant that
male patients were 27% less likely to be discharged from hospital compared to females. The
subdistribution hazards estimates were close to those by cause-specific hazards. This
suggested that the estimation of the hazards of encountering the event discharge was not

affected much by the event death.

Conclusions and Recommendation: It is important to follow up cause-specific hazards with
subdistribution hazards as it provides a check for the effect competing events on the
estimation of probability of occurrence of event of interest. The nonparametric CIF turned out

a better estimator of patient’s cumulative incidence than the compliment of Kaplan-Meier.

Keywords: Competing risk, cumulative incidence function (CIF), cause-specific hazards, subdistribution

hazards.
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CHAPTER 1. INTRODUCTION

1.1. Survival Analysis Method in a Competing Risks Setting

Survival analysis, which is also referred to as time to event analysis, is a class of statistical
methods for analyzing data measured from a particular time point until a pre-specified
endpoint. In standard survival analysis, an individual who experiencesa pre-specified event of
interest within the observation period is said to have an event; otherwise an individual is set
to be censored at the end of the study. Participants that encounter events other than that of
interest are censored non-informatively. Thus, each study participant makes available two
statistics quantities; follow-up time and survival outcome.However, there are other situations
where censoring non-informatively the individuals who encounter events other than that of
interest alters the estimation of probability of encountering the pre-specified event of interest.

Events with such effect on each other are called competing risks.

There are a lot of studies that involve survival time analysis, mostly the standard survival
methods which are desperately implemented without even considering the possibility of
competing risks among the outcome events. Clinical and Epidemiological investigators
sometimes confine themselves only to the statistical methodologies they are familiar with
without bothering much to find out first the possibility of engaging other methods which may
fully address the objectives of their studies without violating assumptions. Many statistical
techniques are based on vital assumptions that must be met before any statistical assessment
is completed (Altman et al, 1995). Brar (2008) in his published thesis; Estimation of
Cumulative Incidence in the Presence of Competing Risks, in the literature review found that
despite the extensive usage of this method, it is astounding to discover that it is sometimes

applied incorrectly or the statistical outputs interpreted inaccurately in the methods section of



some published materials. As a result of this, Brar (2008) concluded that, findings of research

studies that misuse survival methods may be deemed questionable.

One of the extensively used methods to estimate survival probabilities is the Kaplan-Meier
product limit. The Kaplan-Meier approach provides a nonparametric estimate of the overall
survival probability of an event interest (Kaplan and Meier, 1958). Essential to the use of the
Kaplan-Meier estimator is the understanding of the concept of censored or incomplete data.
Censoring transpires in studies when the exact survival time for subject be followed is not
known. The most common type of censoring is right censoring, which indicates the survival
time on a subject is incomplete because the subject did not have an event before the end of
the patient’s follow up in the study. All that is known in the cases is that the survival time
exceeds the time of last observation. The underlying assumption of the Kaplan-Meier
technique is that censoring of subjects occurs at random; subjects are censored for reasons
unrelated to the outcome of the study (Caplan et al, 1994). In this case, as Brar (2008)
concluded, the probability distribution of survival times for the subjects censored should be
comparable to those uncensored. As there is no universally recognized test of random
censorship in survival analysis (Brar, 2008), the assessment of this assumption is left to the
preference of the analyst, which in many circumstances in a medical research is someone

who is not professionally a statistician.

In survival time analysis, the subjects’ events can be grouped as either true or cause-specific
endpoints.The statisticalimplications for each type of endpoint are not necessarily the same
since they are based on different assumptions. Methods of survival analysis are based on the
fundamental assumption that all subjects will ultimately fail if the follow up on each subject
is complete (Caplan et al, 1994). In other words, if a study were tolast a sufficient amount of
time it would be possible for investigators to observe an event for each subject. As an

illustration, a true survival endpoint include: overall survival where the event of interest is
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death from any cause. Methods developed to analyze such data assume the underlying cause
for censoring observation is independent to the underlying mechanism for event occurrence
(Caplan et al, 1994). In principle, this means that subjects who are censored in a study are at
equal risk of developing the event of interest compared to those who are still being followed

but have not developed the event. This is what is referred to as non-informative censoring.

Study participants at risk of two or more causes of failure are analyzed by methods that allow
for competing risks. Kleinbaum and Klein (2005) mentioned that presence of competing risks
precludes the occurrence of another event under examination or fundamentally alter the
probability of occurrence of this other event. For example the Queen Elizabeth Central
Hospital (QECH) adultin-patient data used in this thesis, the interest was to model time until
a patient was discharged from the hospital but the competing risk of dying while receive
medical treatment precluded the onset of being discharged alive. As a result, subjects who
experienced death were not at risk of eventually being discharged alive from hospital. This is
a typical example of cause-specific endpointand censoring subjects who develop another
event is referred to as informative censoring, which violates a fundamental assumption of the
Kaplan-Meier method. Therefore, different methods must be applied for cause-specific
endpoints prone to informative censoring. The Figure 1 illustrates the notion of competing

risks where there are up to k possible causes of failure.

Cause 1

Subject under Study — Cause 2

Cause k

Figure 1: Competing risks situation with k causes of failure.



One of the mathematical definitions of competing risks is related to the joint distribution of
time and cause of failure. In the following section the theoretical snippets of this joint

distribution are presented.

1.2. Presenting Competing Risk Method as Bivariate Random Variable

Pintilie (2006) in the book Competing Risks: A Practical Perspective presented a
mathematical way of expressing competing risk method as a bivariate random variable. For
each subject the pair (T,D) is observed, where T > 0 is the time of failure and D €
{1,2,...,n} is the failure cause. T is assumed to be continuous and positive random variable
while D belongs to exactly one of k different failure types. If an event of type d occurs first,
D =d, T is then the time at which this event occurred. The joint distribution between T and
D is completely specified by either cumulative incidence functions, say F;(t), or the cause

specific hazard function, say H,(t).

The cumulative incidence functions, CIF, for failure of type d is defined by

F,() =P(T <t,D =d)

For t >0 and d € {1, 2,..,n} and corresponds to the sub-distribution function for the

probability of failure from cause d in the presence of the competing events.

1.3. Issues with some Survival Analysis Models

When it comes to estimating cumulative incidence the tradition in the past has been
calculating one minus the Kaplan-Meier survival probability. Estimating 1- KM, the failures
from competing event are treated as censored at the time this event occurs. This way, the
assumption is that the patients failing from a competing risk are no more or less likely to fail

from the cause of interest than the patients still at risk beyond this time (Coviello, 2008).



When the aim is to estimate the failure probabilities, this censoring is inappropriate because,
after a competing event has occurred, failure from the cause of interest is no longer possible.

This is the case since the competing events are assumed to be mutually exclusive.

Kim (2007) also mentioned how the complement of Kaplan-Meier is not an appropriate
estimate of cumulative incidence functions. Although 1 — KM is conceptually easy to
understand and easy to calculate, the estimates are biased if there is more than one type of
event and if the events are dependent. This bias arises because the 1 — KM method assumes
that all events are independent, and thus, censors events other than the event of interest. This
type of censoring is what it is referred to as non-informative censoring (Satagopan et al,

2004).

The other commonly used competing risk models are the cause-specific Cox models. The
cause-specific Cox analysis is applied mostly to explore the pure effect of the covariates. The
competing events are censored. As Tai et al (2011) put it, cause-specific Cox models are not
on their own adequate for modelling competing risk data as such censoring is assumed to be
non-informative. The authors also mentioned how this procedure fails to consider that those
who have experienced a competing event can never experience the main event of interest.
Therefore there is a need to follow up cause-specific Cox model with subdistribution hazards.
Only when it has been established that the subdistribution estimates are not different from the
proportional cause-specific is the cause-specific very appropriate to fit the data. Lim et al
(2010) also mentioned that the choice between Cox cause-specific hazards and

subdistribution hazards is methodically tailored to the objectives of the study in question.

1.4. Competing Risk Data Assumptions

Underlying this discussion of competing risk data is the existence of two important

assumptions. First, it is assumed that the set of k competing events are mutually exclusive
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and exhaustive. The second assumption is that subjects can experience only one type of event
at any particular time point. Models used in competing risk setting come with their own
assumption too. The nonparametric cumulative incidence function has the least or no
assumptions at all on the data. The semiparametric models do not make any assumption on
the shape of the baseline hazards but assumes that it is the same for all events. The parametric

models make assumptions on the shape or distribution of the hazard function.

1.5. Objectives of the Study

The intent of this thesis was to identify and evaluate suitable competing risk models of time
to discharge from hospital among the adult in-patients suffering from and treated for
infectious diseases admitted at the QECH. Death in the hospital was identified as a competing
event. The prognostic factors associated with these two outcome events; patient’s age, sex,

and HIV status were evaluated.

1.5.1. Specific Objectives

1. To compare the estimates probability of failure obtained by the fittingthe complement
of Kaplan-Meierand nonparametric cumulative incidence functions; then to also
establish whether the probabilities of failurefor males and females, and the HIV
positive and the HIV negative were significantly different from each other using the
Pepe and Mori test.

2. To interpret and compare the survival hazards obtained from fitting the
semiparametric cause-specific Cox models and subdistribution hazard models;
interpret the results and explain possible differences between these the cause-specific

and subdistribution hazards for the QECH spine data.



3. To perform diagnostics with an aim of establishing goodness of fit on the cause-
specific Cox model and subdistribution models fitted to the data and interpret the

diagnostics results thereafter.



CHAPTER 2. THE REVIEW OF LITERATURE

2.1. Methodological Issues

Several authors, in the past, expressed concern about the methodological problems coming up
in the analysis of cohort studies or clinical trials when competing risks were present (Gooley
et al, 1999). Investigators would either ignore the competing events by simply doing standard
survival analysis (Kim, 2007) or embraced biased estimators of cumulative incidence
function. Competing risks occur frequently in cancer research even though their presence
may not always be recognized at the time of analysis. As highlighted in the introductory part
of their article Coviello and Boggess (2005) defined a competing risk as an ‘event whose
occurrence precludes or alters the probability of occurrence of main event under
examination.” In this setting, the appropriate estimate of the probability of failure is best
described by the cumulative incidence. Cumulative incidence of an event is often of interest
in medical research and frequently presented in medical articles (Kim, 2007). Previously this
had been a huge problem since many statistical software packages could not calculate the

cumulative incidence (Gooley et al, 1999).

2.2. Handling Cause-specific Endpoints

Cause-specific failure probabilities are used to account the likelihood of a subject failing
from a specific event when there is possibility of failing from other events. Methods of
estimating cause-specific failure probabilities have been available for quite some time but
remain under-utilized in biomedical literature; the reason for this not well known (Pepe et al,
1993). A couple of studies have been conducted in Malawi in the public health setting
applying competing risk models. One of the most recent studies to apply competing risk

model, Weigel et al (2012) applied subdistribution to assess the mortality and loss to follow-



up in the first year of anti-retroviral therapy (ART). A great study although cause-specific
hazard models were never used. This means that the possibility of independence between the
outcomes mortality and loss to follow-up was never assessed. Although the use of competing
risk models is gaining ground now, there use is not as high as expected. Perhaps from the
technical standpoint, the methods have a predisposition of being mathematically challenging,
and deal with the less-than-ideal situation of dealing with more than one event. From the
applied side, the reason is most likely lack of awareness among clinical investigators of

alternative methods that can be applied.

As one way of promoting the implementation of competing risk models over compromised
methods like the complement of Kaplan-Meier estimate, Satagopan et al (2004) published a
non-technical review, aimed at the applied clinical investigators, recommending and
signifying the use of competing risks survival analysis using the cumulative incidence
function. The function they explicate was not new in that this is the most common approach
to estimate probabilities in the presence of competing risks. A number of authors have
examined the estimation of failure probabilities within the competing risks framework. Some

of the issues are presented in the following paragraphs.

Gooley et al (1999), offered an alternative representation of the cumulative incidence and the

complement of the Kaplan-Meier (1 - KM) utilizing Efron’s concept of reallocating censored

observations to the right censored group. They illustrated in their research paper that the

1 - KM estimator reallocated competing events to the right censored group in the same way
that censored observation were moved to the right, which wrongly assumed that failure from
the event of interest was still possible. However, the cumulative incidence estimator removed
subjects experiencing the competing event from the risk set and only reallocated the censored

observations to the right censored group. Hereafter if a subject failed from the competing



event, the contribution to Gooley’s representation of the cumulative incidence is zero. In

comparing these two estimators, if no competing risks are available, the cumulative incidence

and 1 - KM yield exactly similar curves. If there are competing risks, the 1 - KM estimate is
overblown resulting in biased estimate of failure. Besides, Gooley et al (1999) emphasized

that the cumulative incidence is founded on the hazard of the event of interest as well as the

hazard of the competing risks whereas the 1 - KM is just a function of the hazard of failure

from the event of interest.

In their paper Analysis of the Probability and Risk of Cause-specific Failure, Caplan et al
(1994) find out that the mechanism of early failure differs from that of late failure in studies
involving radiation therapy. For a thorough analysis of local failure the authors advocated the
use of the cumulative incidence function. The authors concluded that the cumulative
incidence estimator is of particular importance when estimating failure probabilities at a
given time but pointed out the estimator failed to convey overall risk for the patient
population yet to experience the event of interest. To get over this challenge, they
recommended displaying a plot of the cumulative hazard rate, which increased as risk
increased but was also difficult to interpret as it lacked a direct probability interpretation.

Another approach advocated was tocalculate the cumulative conditional probability.

After estimating the cumulative incidence of an event, it is often of interest to determine
whether there is a difference in cumulative incidence rates among different treatment groups.
In standard survival analysis, this is done using the log-rank test to compare curves generated
via 1 — KM method. In the presence of competing risks, however, this is inappropriate, for
the same reason given for 1 — KM. Instead, Kim (2007) cited in his paper that Gray (1988)
investigated this issue and proposed a class of tests for comparing cumulative incidence

curves of a particular type of failure among different groups in the presence of competing
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risks. As cited by many authors in their journal articles, Pepe and Mori (1993) give a method
for comparing the cumulative incidence curves directly. In Stata 10, if you are using a Stata-
certified ado file written by Coviello, this method gives out comparison results for both the
cumulative incidence curves estimated from event of interest and the curves from competing

events (Cleves et al, 2010).

2.3. Prognostic Factors in Competing Risk Data Analysis

When the difference in the cumulative incidence curves has been established among different
treatment groups, it is also important to determine whether this difference is solely due to
treatment or to the confounding factors, such as age. This question is usually fixed by fitting
cause-specific Cox model for a particular failure, treating other competing risks as censored
(Kim 2007). However, the effect of a covariate on an event from either a cause-specific
model may be different from the effect of the covariate of the event in the presence of

competing risks (Kim 2007).

Cause-specific hazards and corresponding hazard ratios are estimated using Cox proportional
hazards model for each failure event. Cause-specific hazards estimation is most commonly
used method of analysis in a competing risk setting (Kleinbaum and Klein, 2005). Cause-
specific hazards give insight into the biological mechanism of subject under investigation

since they have independent assumption among the competing events.

The comparison of the cause-specific hazards is made as if the other types of events did not
exist. This approach is regarded by a good number of investigators as unrealistic (Kim 2007).
However, Pintilie (2006) in his book Competing Risks stressed that the use of cause-specific
hazards is a good way of analyzing the data when one wants to find the biological mechanism

underlying the specific outcome.
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On the other hand, comparing the cumulative incidence functions is more direct; it takes into
account all types of events and does not assume independence between times to the different
types of events. However, Pintilie (2006) further argues that the cumulative incidence
function for the event of interest can be low just because the risk of a competing risk event is
high. On contrary, the cause-specific hazards regression is invariant to the size of the
competing risks. Hence, the simple comparison of the cumulative incidence function for the
event of interest is not sufficient and needs to be enhanced by the comparison of the

cumulative incidence function for the competing risks as well (Coviello and Boggess, 2004).

2.4. The Subdistribution Hazards

Using Cox models alone to model the cause-specific hazards for the event ‘hospital
discharged’ with the covariate say, patient’s HIV status, then the resulting cumulative
incidence functions for the discharged that assess the HIV status effect will depend on the
following five things; (1) the baseline hazard for being discharged; (2) the baseline hazard for
dying in the hospital; (3) the effect of HIV status on the hazard for being discharged; (4)
effect of HIV status on the hazard for dying in hospital; and finally, (5) time itself. There is
no way to summarise how the HIV status affected the incidence of discharged without taking
all these factors into account (Cleves et al, 2010). Furthermore, with this Cox analysis
method you are not even guaranteed that the cumulative incidence for one group will always

be greater than that for the other: the curves could cross at one or more points.

Fine and Gray (1999) solved this mystery by proposing a regression modeling applied
directly on a cumulative incidence function for a particular use in a competing risks analysis.
It is much easier to interpret for cumulative incidence functions. They imposed a proportional
hazards assumption on the subdistribution hazards and gave estimators and large samples

properties. The subdistribution hazard model is formulated in a similar manner as the cause-
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specific Cox model, except that the exponential of the regression coefficients now denote the
subdistribution hazard ratios of the respective covariates on the subdistribution hazard of

event, say k.

This method takes into account other events and does not make any assumptions about their
independence between the event time and censoring distribution. In other words, the
censoring mechanism is independent of disease progression. Estimation of the covariates
coefficients for the models on cause-specific and subdistribution hazards follows the partial
likelihood approach used in the standard Cox model. However, the difference between cause-
specific and subdistribution hazards lies in the risk set (Lim et al, 2010). For the cause-
specific hazards, the risk set decreases at each time point there is an event of another cause.
For the subdistribution hazard a person who has an event from another cause remains in the

risk set.

2.5. The Admission Data and Competing Risk Models

This thesis applied and compared the performance of 1 — KM and nonparametric cumulative
incidence; it also compared the cause-specific and subdistribution hazards with an aim of
assessing the degree of association between the event of interest and the competing event.
Discharged from hospital was the outcome of interest and dying in the hospital was
considered as a competing event. The aim was illustrate the implementation of prominent
competing risk models often used on epidemiological data and to explore the effect of HIV
status, age and sex on the time spent in hospital until discharged. Implementation of
competing risk models took care of those who died as having encountered another event. The
nonparametric cumulative incidence were applies to estimate overall probability of
encountering an event; be it the main event or competing. This model was considered for its

very little assumptions it makes on the data. The cause-specific Cox models were applied to
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explore the pure effects of individual covariates on the survival time. The subdistribution
hazard models were implemented as a semiparametric approach to the cumulative incidence.
Unlike cause-specific hazard models, the subdistribution hazard models do not just right
censor the competing events when they occur but consider them as another type of events
altogether. The subdistribution hazard models also demonstrate the effect of variables by

giving out the subdistribution hazards ratios for each variable.
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CHAPTER 3. METHODOLOGY

3.1. The Data and Study Population

As clearly highlighted in the preceding chapters, the major interest in this thesis was to model
time spent in hospital until a subject was discharged within the observational period of 7

days.

The data used in this thesis was in-patient data collected at the QECH for patients 14 years
old or above. Baobab Health Trust, a non-governmental organisation based in Lilongwe,
collaborated with the Ministry of Health and Malawi Liverpool Wellcome Trust for
deployment of a computerized real time data collection systems to the QECHfor their
Surveillance Programme of In-Patients and Epidemiology (SPINE) project. The information
system recorded, tracked and managed in-patient care and appointment data. The patient
registration system allowed all patients to be recorded with relevant details. Using a unique
barcode for each, it was able to identify patients so that their records could be retrieved from
system in future visits by simply scanning their assigned barcodes.Having each patient's
summary record stored in a computer system meant that whenever a patient was there to seek
care from QECH, those treating them would have secure access to summary information to
assist with diagnosis and care, and to also know how many times a patient visited the facility.
The SPINE data was availed for this thesis in a Microsoft Excel spreadsheet format. It
covered patients’ diagnosis and admission information from December 2010 to June 2011.
As of now, the SPINE data is still being collected on daily basis as part of Health
Management Information System (HMIS). This is greatly linked to monitoring and
evaluation of the healthcare provided. The interest was to model time the adult in-patients
suffering from infectious diseases spent in hospital until discharged. Competing risk models
were applied regarding death as a competing event.
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The endpoints of time spent in hospital were the health outcomes as listed in the SPINE
dataset. There were five outcomes or five ways to end one’s hospitalization span; (1)
discharged alive (and probably better), (2) dying in hospital, (3) transferred out to a different
hospital, (4) referred to another facility, and finally (5) absconding. The main interest was
time in days to discharge. Out of the five listed outcomes, only discharge and death occurred
frequently hence the other outcomes were ignored as they were very rare events. Only those
that died in hospital and those that were discharged produced comparable figures to conduct
statistical analysis and were kept within the study population for this thesis. The event of
interest being discharged from hospital, death before being discharged was thought as a

competing risk event. Only patient’s first recorded admission visit was used in the analysis.

The dataset used in this study contained only adult in-patients’ information and not any out-
patients’ information. An adult here was defined as any individual 14 years of age and above.
Therefore, the study participants were the admitted adult patients whose information was
collected and saved in the SPINE database. Since the QECH is the only public referral
hospital in the South-Western Medical Zone, these patients are generally from the districts
making up the South-Western Medical Zone. These districts are Blantyre itself, Chiladzulu,
Mwanza, Neno, Thyolo, Chikwawa and Nsanje. Patients coming to seek healthcare at QECH
for the first time were assigned a spine barcode which comprised a unique number and
computer identifiable bars or stripes. This enabled the computer system to identify a patient
every time he or she comes to seek healthcare at QECH and allowed each patient’s medical

history to be collected and stored electronically for reference.

The diseases and disorders recorded through the process of medical diagnosis were too
numerous to be statistically considered separately. As such, the diseases and disorders were
put into categories as per the international classification of diseases (ICD — 10). The ICD — 10

is a World Health Organisation sanctioned method of putting diseases into groups. After
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categorizing the diseases, only patients suffering from the infectious diseases were kept in the
dataset for analysis. Concentrating on one disease group ensured that there was statistical
homogeneity and that variations due to diseases group type or disorder group type were taken
care of. Infectious disease category comprised among others diseases such as all kinds of
tuberculosis, sepsis, urinary tract infection, meningitis, and malaria. The reason for settling
on infectious diseases was partly that these categories comprised most suffered and
reportedly most life threatening diseases in Malawi. It was interesting and important to know
length of hospital stay information of patients suffering from infectious diseases and

receiving treatment under ordinary clinical conditions at QECH.

The length of time spent in the hospital was measured in days. The entry point into the study
was the day a patient was admitted into the hospital and the exit time was the time a patient
either died or was discharged from the facility. Since there were competing outcomes in this
study, the Cox models were applied with the focus on cause-specific hazards and not standard
hazards. For the same reason the cumulative incidence function was opted over the survival
function. The estimation of probability occurrence by time, say t, for a particular failure can
be handle by fitting 1 — KM, the complement of Kaplan-Meier estimator, or cumulative
incidence function. The estimator 1 — KM was opted out because of bias when dealing with
competing events. Nonparametric cumulative incidence function was a better replacement
and posed as a rational comparison to the 1 — KM as both model are purely nonparametric in
nature. The cause-specific hazards assume independence among the competing events and are
only suitable when biological mechanism of the covariates is of interest. Otherwise they right
censor competing events whenever they occur. To overcome this, the subdistribution hazards
model by Fine and Grey (1999) were implemented as they recognize a competing event when
it has occurred and takes care of competing events when coming up with hazard functions.

The other models that can be used in a competing risk setting include the multinomial
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logistic. It assumes that the covariate effect is constant across events and assesses whether the
baseline hazard is varying across events. The multinomial logit models were not considered
for this thesis as they could not help to achieve the objectives set for this study. The following
sections present the statistical procedures, relevant mathematical characteristics of the models

in this thesis.

3.2. Standard Single Event Time Model

In follow-up studies the exact survival time is only known for those study participants or
units who show the event of interest during the follow-up period. For the others all one can
say is that they did not show the event of interest during the follow-up period. These study
participants or units are called censored observations. Individuals can be right censored, left
censored or interval censored. Subjects are right censored if it is known that the event of
interest happened sometime before the recorded follow up time (Kleinbaum and Klein, 2005).
An attractive feature of survival analysis is that we are able to include the data contributed by

censored observations right up until they are removed from the risk set.

Standard survival data measure the time span from some time of origin until the occurrence
of one type of event. In such a case, the Kaplan-Meier product limit estimator is frequently
used in describing time to event experience of the subjects under study. The standard survival
data can also be presented as a bivariate random variable, say (T, D), where T > 0 is time to
event of interest and D € {0, 1} is the failure cause. D here is the censoring variable, D = 1
if the event of interest was observed, and D = 0 if the observation as censored. When D =1,
then T is the time at which the event occurred and when D = 0 is the time at which the

observation was censored.

In general as Pintilie (2006) put it, given T as a random variable representing survival time

that has a density function, f(t), and distribution function, F(t). The survival function at
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time t, S(t), is defined to be the probability that the survival time is greater than t, where
S(t) = P(T >t) =1— F(t). The survival function, therefore, represents the probability that
an individual survives from the origin to sometime beyond t. The hazards function or hazard
rate, h(t), is the probability that an individual encounters an event of interest at time ¢,

conditional on having survived to that time, which is defined as:

P(tST<t+At|T2t)}

h(t) = Al%Lno{ At

The hazard function, therefore, represents the instantaneous death rate for an individual

surviving up to time t and provides full characterization of the distribution of T.

The main concern with this approach is how to study the impact of covariates of the
distribution of T. To do this, we assume the variation in the distribution of event and
censoring can be characterized by a vector of observed explanatory variables, say Z, which
can be either time-invariant or time-dependent covariates. Under Cox proportional hazards
model, the hazard function for the event time T associated with the covariates Z is defined as

follows:
h(t) = hy(t)eP'Z

Where the function hy(t) is an unspecified baseline hazard function and gives the shape of
the hazard function. If all explanatory variables are zero, the hazard function will be the
baseline hazard h,(t). If two individuals have identical values of the measured covariates,

they will have identical hazard functions.

3.3. Cause Specific Hazards Models

Again as stated in the previous chapters, competing risks in survival analysis refer to a
situation where subjects under investigation are exposed to more than one possible type of
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events. Thus, each subject is associated with a pair (T, D) where T is the time to event and
D € {1, 2, ..., k}is the type of the event for that subject (Pintilie, 2006). In this case there are k
possible causes of failure. The cause-specific hazard function in the competing risks model is
the hazard of failing from a given cause k in the presence of the competing events as shown

mathematically below (Kleinbaum and Klein, 2005):

hk = lim

At—0

{P(tST< t+At,D =k|T = t)}
At

With D € {1, 2, ..., k}. With covariates incorporated in it, the regression model on cause-

specific hazards is given as:
h(t]2) = hoy (e

The total hazard, h(t: z), equals the values of its corresponding hazards function summed up

to time t. It is then

k
A1) = ) ()
k=1

This equation implies that the all-cause hazard rate is the sum of K hazards.

The cause-specific hazard can be modeled using the Cox model, which is broadly used in
medical research. The cause-specific hazard model may be more clinically understandable
when assessing the prognostic effect of the covariates on a specific cause because it can be
observed whether the covariate is reducing or increasing the instantaneous probability of the

event of interest irrespective of other covariate effect.
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3.4. Nonparametric Cumulative Incidence Function

With competing risk data, the cumulative incidence curve derived from cause-specific hazard
functions provides important event information for a specific cause. Marubini and Valsecchi
(1989) derived the cumulative incidence estimator for the failure k as

fk: ZS( 1) kj

Jltist

Where $(t;_,) is the Kaplan-Meier estimate of the overall survival function, that is,
considering failures of any kind, and the second factor is an estimate of the hazard of failure
k. This definition implies that the cumulative incidence is a function of the hazards of all the
competing events and not solely of the hazard of the event to which it refers. This equation
further shows that the sum of all cumulative incidences equals 1 — S(t), the complement of

the overall Kaplan-Meier estimate of survival considering failures of any kind.

The variance estimator for the distribution of this formula is as follows (Caviello and

Boggess, 2004):

Var{lk(t )} Z[{Ik(t) Ik(ta)} —d )] Z{S(t“ 1)} ( )(671121)

-2 Z]_:{fk(tj) = le(t)}HS (ta-1)} (%)

Where d; = P dj and C is the number of causes of failure. It was report by Caviello et al

that a general formula was derived by Dinse and Larson (1986) using the delta method.
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3.5. A Comparison of Cause-Specific Hazards Regression and Cumulative

Incidence Function

The probability that the event occurs before time t can be derived from the hazard through an
equation. So, the hazard completely describes this probability distribution. The higher the

hazard, the higher the probability that the event occurs before t and vice versa.

In competing risk situation, the probability that the main event occurs before time t
(cumulative incidence) depends on both the hazard of the main event and the hazard of the
competing event. Thus, there is no obvious relationship between the hazard and the
cumulative incidence of the main event, the latter depending on the hazard of the competing

event too.

In competing risk situation the cause-specific hazard and the cumulative incidence do not
convey the same pieces of information. The former tells about the biological mechanism
underlying the specific outcome. The latter informs us about the probability and, therefore,
the actual number of patients failing from a specific cause, taking into account that this type
of event could not have been observed, hindered or precluded because of another type of

event.

3.6. Subdistribution Hazards Regression

Fine and Gray (1999) developed an alternative semiparametric model that considers all
important factors in a competing risk setting. These factors are the baseline hazard effect for
the outcome events, the covariate effect for the outcome events and the effect of time itself.
They define the subdistribution function for failure cause i as

p{t T <t+At, failure from cause i|T >t or (T <t and not cause i)}

h,(t) = v
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This means that the subdistribution hazards for cause i is the instantaneous probability of
failure from cause i at time t given either no failure before t or failure from another cause
before t. The subdistribution function appeal arises from the fact that the cumulative
incidence function for a particular cause i is a function of the subdistribution hazard only for

cause i. Mathematically this can be presented as;
t
CIF;(t) =1—exp —f h,(uw)du
0

Where the integral on the right is the cumulative subdistribution function, H,(t). In other
words, if you define a regression model for h,(t), you can use it directly to directly interpret

covariate effects on CIF;(t) because there is a direct correspondence between the two.

The Fine and Gray model is a direct analog to Cox regression with the subdistribution
hazards taking the place of traditional hazards functions. Their model for subdistribution

hazards for cause | is
h,(t]x) = h,o()exp(xB)

For covariate vector X and baseline subdistribution hazard function K,O(t). As in Cox
regression, this model is semiparametric in that we assume no functional form for the

baseline subdistribution hazard. The effects of covariates are assumed to be proportional too.

3.7. Time Varying Covariates

Kleinbaum and Klein (2005) defined time varying covariate as any covariate whose value for
a given subject may differ over t. In contrast, a time-independent variable is a variable whose
value for a given subject remains the same over t. The general form of the Cox proportional

hazards model, as presented earlier, is as follows:
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h(t]X) = ho(t)eX'P

This model gives an expression for the hazard at time t for an individual with a given
specification of a set of explanatory variable vector X. The Cox model formula says that the

hazard at time t is the product of two quantities; the baseline hazard h,(t) and the

exponential expression eX'B . An important feature of this formula, which concerns
proportional hazards assumption, is that the baseline hazard is a function of t but does not
involvethe X’s, whereas the exponential expression involves the X’s but does not involve t.

In this case the X’s are called time-independent covariates.

There is a possibility, nevertheless, to consider X’s that do involve t. If time-dependent
variables are considered, the Cox model form may still be used, but they no longer satisfy the
proportional hazard assumption. These models are commonly referred to as the extended Cox

models.

When time-dependent variables are used to assess the proportional hazard assumption for a
time-independent variable, the Cox model is extended to contain interaction terms involving

the time-independent being assessed and some function of time.

3.8. Checking the Model Assumptions and Diagnostics

Basically, there are three types of models considered in this thesis. These are nonparametric
cumulative incidence function, cause-specific hazards Cox, and subdistribution hazards
model. Each one of these was fit taking into account the assumptions that the model make on

the data.

24



3.8.1. The Proportional Hazards Assumption

The Cox proportional hazard model assumes that the hazard ratio comparing any two
specifications of the predictors is constant over time. This also means that the hazard for one
individual is proportional to the hazard for any other individual, where proportionality

constant is independent of time (Cleves et al, 2010).

As Cleves et al (2010) put it; the Cox model formula says that the hazard at time t is the
product of two quantities. The first of these is the baseline hazard function, which is only a
function of t and does not involve the explanatory vector X. The second quantity is the
exponential expression e to the linear sum of B;x; where the sum is over the k explanatory X
variables. The exponential expression does not involve t. The proportional assumption is not
met if the graphs of the hazards cross for two or more categories of a predictor of interest.
However, as put by Kleinbaum and Klein (2006), even if the hazard functions do not cross, it

is possible that the proportional hazards assumption is not met.

3.8.2. Goodness-of-Fit

Model diagnostics are applied to identify unexpected characteristics of the data that may
seriously influence conclusions or require special attention. The detection of influential
observations, that is observation whose deletion, either singly or multiply, result in

substantial changes in parameter estimates, fitted values or tests of hypothesis.

Diagnostic methods are generally based on residuals. Standardized residuals will be produced
and assessed, where each residual is standardized by its estimated standard error. Another
way of doing this is by correcting for the leverage of the point in the space of the explanatory

variable.
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3.9. Statistical Software Package

The dataset was obtained as a single document in Microsoft Office Excel with eight separate
working sheets. The data on these working sheets were cleaned and exported to a different
statistical package called Stata® version 10.0. In general, Stata® is powerful, interactive and
user-friendly software with high level applicability in inferential statistics. It has to be
mentioned here that under ordinary circumstances Stata® 10 cannot handle nonparametric
competing risk models. For example, the nonparametric estimation and testing of cumulative
incidence functions requires that one download and install some Stata certified user-written

software, which provide functionality not included in the official Stata® 10.

To conduct the thorough analysis on nonparametric cumulative incidence functions, there
were basically two extra programs needed from Statistical Software Components archives
hosted at Boston College in the United States. To estimate nonparametric cumulative
incidence functions, there was a need to first install the command stcompet by Coviello
and Boggess (2004). To test equality of cumulative incidence functions among groups, the
command stpepemori written by Coviello (2008) was installed. The subdistribution
hazards were performed using Stata 11 command stcrreg which is also not available in

Stata 10.

3.10. The Estimates, Statistical Tests and the Level of Significance

The summary characteristics of patients such as age and average days spent in hospital were
presented as median and, naturally, the measure of dispersion was the interquartile range.
Rank-based measure of central tendency and its subsequent measure of dispersion are ideal in
survival data since survival data are typically right skewed. The Hazard ratios, their

corresponding coefficients and 95% confidence intervals were presented for cause-specific
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hazards and subdistribution hazards models. Also included were the calculated p-values for

all statistics. All statistical tests were made at 5% level of significance.
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CHAPTER 4. RESULTS AND DISCUSSION

This chapter presents and discusses the results. Section 4.1 presents exploratory data analysis,
the fitted models are presented in section 4.2, the assessment of model assumption and
goodness-of-fit is outlined in section 4.3. Finally, section 4.4 presents the discussion of

results.

4.1. Exploratory Data Analysis

The SPINE dataset constituted 7262 patients who were admitted at QECH between
December 2009 and June 2011 for different diseases. Of the 7262 patients, only 829 met the
ICD — 10 criteria as suffering from infectious diseases and were therefore included for

analysis. Table 1 below shows the baseline characteristics of the patients.

Table 1: A summary of characteristics of patients

Characteristics HIV Status Sex
N=829 HIV+ HIV- Unknown | Male Female
Patient’s Age Median 34.1 30.6 321 341 31.6
(Years) IQR 12 21.3 17.6 14.8 135
Time in hospital Median 7 5 3 5 4
(Days) IQR 3 4 4 4 5
Discharged Alive Frequency 222 70 194 206 280
n=486 (percent) (45.7) (14.4) (39.9) | (42.4) | (57.6)
Died in Hospital Frequency 41 3 38 45 37
n=82 (percent) (50.0) (3.7 (46.3) (54.9) (45.1)
Censored at the end | Frequency 189 43 29 140 121
n=261 (percent) (72.4) (16.5) (11.2) (53.6) (46.4)
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The summary of baseline characteristics as presented in table 1, out of 829 patients, 438
(52.8%) were females. 452 (54.5%) patients were HIV positive, 116 (14.0%) were HIV
negative and 261 (31.5%) had unknown HIV status. The overall median age for 829 patients
was 35.3 years with an 1IQR of 21.0. The median ages for male patients and female patients
were close with very similar dispersion, males had a median age of 34.1 years (IQR: 14.8)
and females had median age 31.6 years (IQR: 13.5). For the HIV positive patients, the
median age was 34.1 years (IQR: 12.0) and the HIV negative patients’ the median was 30.6
years (IQR: 21.3). From the interquartile ranges, it was clear that the HIV negative patients’
ages were much more dispersed than the HIV negative patients’ ages. The HIV positive
patients had a relatively small interquartile range which signified that their population was
concentrated around the maiden age 34.1 years.On the health outcomes of the patients; 702
(84.3%) were discharged alive from the hospital, 127 (15.7%) were reported to have died in

hospital while receiving medical treatment.

Infectious diseases category constituted a wide range of diseases most commonly include
different kinds of tuberculosis, urinary tract infection, sepsis, and malaria. Some of the
admitted patients were also diagnosed with other infectious diseases such as hepatitis,
meningitis, and measles. But there occurrence rate was relatively low henceforth bundled up
in a sub-group called ‘other’. Table 2 presents the diagnosis results of infectious diseases as

defined by the WHO sanctioned ICD — 10:
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Table 2: A summary of clinical diagnoses results performed on the in-patients

Disease Frequency

N = 829 (Percentage)
Tuberculosis 188 (22.7)
Urinary Tract Infection 43 (5.2)
Malaria 223 (26.9)
Sepsis 307 (37.0)
Other (hepatitis, meningitis, measles, etc.) 68 (8.2)

The outlying ages are also evident by segregating by HIV status. Figure 2 shows Box-plot

diagrams showing the dispersion of age among the observations, categorized by sex and HIV

status:
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Figure 2: The Box-Plot by sex and by HIV status.

The presence of age outliers, as shown by the Box plots in figure 2, was confirmed. Both
female patients and male patients had outlying aged patients. The HIV status Box-plots

shows that the distribution of the HIV positive patients is concentrated between ages 30 and
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40, which contrasts sharply with the Box-plot of the HIV negative patients. The concentration
of age distribution of the HIV negative is spread out across twenties to fifties. For the
admitted HIV positive patients, this meant that prevalence was relatively high among those

between late twenties and late thirties.

Table 3 shows the patients enrolled as suffering from infectious disease from December 2009
to June 2011. The lowest observed enrollment rate was 10 and that was in December 2009.
The highest observed enrollment rate was 71 in January 2011. For the other months, the
number of patients registered varied between these two highest and lowest figures. In the last
month June 2011 a total of 20 patients were registered. The entire data collection span
consisted of 19 months. The following table shows how patients’ admissions were distributed
across months and years from December 2009 to June 2011, the data collection span for this

dataset:

Table 3: Patients admitted at QECH for generally suffering from regular infectious diseases

Month Admitted Year Admitted
N = 829 2009 2010 2011

January - 29 71
February - 59 50
March - 66 36
April - 51 25
May - 45 31
June - 17 20
July - 40 -
August - 42 -
September - 50 -
October - 67 -
November - 65 -
December 10 55 -
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Table 4 is a life table showing the survival pattern of the patients within the observation time

of 7 days. From this table, 486 patients were discharged within the observation period of 7

days in hospital. Of the 829 patients, 361 (43.6%) of them remained in the study after 5 days,

the rest either died or discharged. On the seventh day, only 316 patients and were henceforth

censored.

Table 4: Shows the estimated survival probabilities of the days of the patients admitted at

QECH.
Observation Beginning Discharges in Estimated Standard
Time (Day) Total Time Interval Survival Error
Probability

1 829 126 0.85 0.012
2 703 95 0.73 0.015
3 608 89 0.63 0.017
4 519 88 0.52 0.017
5 431 70 0.44 0.017
6 361 45 0.32 0.017
7 316 316 0 -

In this analysis, no participant was reported lost to follow up. The estimated survival

probabilities given in the table above were calculated under standard survival assumption

where subject who died in the hospital were treated as censored observations.These estimates

would be biased if the event of interest and the competing event were dependent.

4.2. The Models Fitted

This section presents the cumulative

incidence function,

cause-specific hazards,

subdistribution hazards models that were applied to the SPINE data and their statistical

inference implications.
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4.2.1. The Comparison between Nonparametric Cumulative Incidence and

1-KM

The results obtained after fitting the nonparametric cumulative incidence function were
compared to those of the complement of Kaplan-Meier 1 — KM. As shown in the figure 4-2,
the estimates of 1 — KM were deviating far and far away from those obtained from the
nonparametric cumulative incidence with time. The independence of competing events
assumption made for 1 — KM was clearly not valid as the curves were slowly deviating apart
with time. In this scenario, it was important to treat death as another event, a competing
event. Since the nonparametric cumulative incidence considers both the main and competing
event when plotting cumulative survivorship curve, it was clear from figure 3 that the two
events were dependent on each other to some extent. Figure 3 shows the 1 — KM and

nonparametric cumulative incidence curves.
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Figure 3: Comparison of 1 — KM and Cumulative Incidence (CI) curves.
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From figure 3, at time 1 both the cumulative incidence and the 1 — KM model gave similar
survival probability. As the admission days progressed the 1 — KM curve gave higher
estimates as it censored those who encountered death in the course of admission. Therefore
the cumulative incidence function was a safer model to opt for. However, it was noted in
figure 3 that the estimates from 1 — KM and cumulative incidence function were not hugely
different due to the fact that by far more patients were being discharged than dying in

hospital.

4.2.2. The Comparison of Cumulative Incidence Functions between Males and Females,

and between the HIV Positive and HIV Negative

The nonparametric estimation of the cumulative incidence functions for groups were plotted,
comparing the survivorship of males and females, and the survivorship of HIV positive and
the HIV negative patients across all ages. Figure 4-3 shows cumulative incidence curves for
the males and females.This was the calculated probability of being discharged from hospital

given that others died along the way.

|Discharged Femaleg - - - - - Discharged Males
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Figure 4: Cumulative Incidence by sex for the outcome ‘discharged from hospital’.
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The cumulative incidence curves from figure 4; the curve for the females was consistently
higher than that of males. This meant that, for whatever reasons, female patients had a
consistent higher likelihood of being discharged from hospital than their male counterparts.
On day 1, both cumulative incidences were below 0.20. The females’ cumulative incidence
was approximately 0.15 and that of males was approximately 0.10. On the seventh day, the
estimated cumulative incidence for females was 0.62 and that of males was approximately

0.52.

The overall cumulative incidences for both events showed that patients were more likely to
be discharged than die in the hospital. Of course the cumulative incidence curves were

disaggregated by HIV status but the overall incidences can be discerned from that.

Figure 5 shows the HIV status cumulative incidences graphed by HIV status. The first graph
shows the cumulative incidence when the event is a patients being discharged from the
hospital, and the second graph shows cumulative incidence when death was the event that
occurred. The cumulative incidencefor the HIV negative patients was higher than of HIV
negative patients, this meant that the HIV negative were more likely to be discharged from
hospital as compared to the HIV positive patients.On death as an outcome event, the HIV
positive were by far more likely to die in the hospital than the HIV negative patients. This
obviously meant that patient’s HIV status had an effect on the health outcome events of a

patient admitted at the QECH.
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Figure 5: Cumulative incidence by HIV status. The first one is for the failure event of

being discharged; the second is for the event *death in hospital®.

Table 5 presents the figures obtained after running Pepe and Mori cumulative incidence

comparison test for both the competing and the event of interest.

Table 5: The measurements after applying Pepe and Mori cumulative incidence comparison

test
Extrapolative Outcome Event Chi-Square (1) P-Value
Factor
Patients’ Sex Main Discharged 14.13 p < 0.001
Event
Competing | Died 24.20 p < 0.001
HIV Status Main Discharged 13.81 p < 0.001
Event
Competing | Died 0.61 0.435
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The first three p-values obtained for both events lead to the rejection of the null hypothesis
that the cumulative incidences were similar. The p-values were all less than 0.001. For those
discharged from hospital, it was therefore concluded that there was enough evidence that the
male and female cumulative incidences were statistically different from each other. It was
also concluded that the cumulative incidence curve for the HIV positive was significantly
differently from that of HIV negative. There was association between patient HIV status and
the likelihood of being discharged from hospital. From the cumulative incidence curves
plotted, it is quite distinct that the HIV negative patients had a consistently higher likelihood
of being discharged from QECH as compared to their HIV positive counterparts. Putting this
in terms of length of hospital stay, the HIV positive patients seemed to have been spending a

little more time in the hospital before being discharged as compared to the HIV negatives.

The cumulative incidence by HIV status for the competing event death in hospital came out
insignificant with a p-value of 0.435. There was no enough evidence to reject the null
hypothesis and it was concluded that the cumulative incidences were not statistically different
from each other. Interpreting this further in terms of length of hospital stay, there was gross
lack of evidence about the difference in probabilityof spending time in hospital before a

patient was died between the HIV positive and the HIV negative.

4.2.3. The Results for the Unadjusted Cause-Specific Hazards for the Discharged

Patients

Three modelswere fitted each containing one of the three covariates; these being HIV Status,
age and patient’s sex.Table 6 shows the coefficient and hazard ratio estimates gotten after
fitting three cause-specific hazard modelsfor each covariate HIV status, age and patient’s sex.
The reference category for HIV status was the HIV positive. The reference category for sex

was the females. As for patients’ age, the comparison was based on per unit increase in age.
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The failure event for these models was the event of interest, discharged from hospital. Death

in hospital was treated as censored observation. All models were unadjusted.

Table 6: The coefficient estimates after fitting three unadjusted Cause-Specific Hazard (CSH)

models with ‘discharged’ as the failure event.

CSH Model Hazard Ratio | 95% ClI P-value
HIV Negative 1.40 1.07,1.83 0.014
(Reference: HIV Positive)

Age 0.99 0.98, 0.997 0.007
Male patients 0.74 0.62, 0.88 0.001
(Reference: Females)

From this output, the estimate of the hazard ratio for the HIV negative patients as shown in
the cause-specific model was 1.40 (95% CI: 1.07, 1.83). The p-value for the Wald test was
for this was 0.014 which is less than 0.05. Thus HIV negative patients had a 40% higher
hazard of encountering hospital discharge than their HIV positive counterparts. Put
differently according to the figures presented in table 6, the HIV positivepatients had a lower
hazard of encountering the event of interest. The cause-specific hazard modelfor patient’s age
yielded a hazard ratio estimate of 0.99 (95% ClI: 0.98, 0.997) and a p-value of 0.007. Since
the hazard ratio was less than 1 and age progressed by years; this meant that any patient one
year older had a 1% less hazard of being discharged from hospital as compared to a patient a
year less in age. Patient’s sex came out significant too with the hazard ratio of 0.74(95% CI:
0.62, 0.88)and p-value of 0.001. Males had a 27% less chance of being discharged from
hospital compared to females. Figure 6 presents the graphical regression results for cause-

specific hazard Cox model with HIV status as treatment variable among the patient.
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Figure 6: Smoothed cause-specific hazards curves when ‘discharged’ is the failure event.

Figure 6 confirms the results from table 5; females had a higher hazard of encountering the
event of interest than their male counterparts, same with the HIV negative patients who had a
higher hazard of being discharged. As time a patient spent in hospital was increasing so were
the hazard curves for both the patient’s HIV status and patient’ssex, until towards the very

end where the hazard curves seem to lower.

4.2.4. The Results of Unadjusted Cause-Specific Model for the Competing Event Death

The same three unadjusted cause-specific hazards modelswere fitted with failure event type
as death in hospital. Here, now discharged patients were treated as censored observations. By
censoring the discharged patients, it was assumed that the event discharge was independent

from death in hospital. All models we fitted unadjusted, the results after fitting these models

are presented in table 7:
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Table 7: Estimates of unadjusted cause-specific hazard (CSH) Cox models with death as

failure event

CSH Model Hazard 95% ClI P-value
Ratio

HIV Negative (Reference: HIV 0.33 0.10, 1.05 0.061

Positive)

Age 1.02 | 1.003,1.03 0.018

Male Patients (Reference: Females) 1.20| 0.78,1.85 0.418

The cause-specific hazard model for age is the only one that came out significant when
failure event was ‘death in the hospital’.The p-value was 0.018 and hazard ratio was 1.02
(95% ClI: 1.003, 1.03). This meant that patients a year older yielded a 2% higher hazard of
encountering death in hospital than a year younger patients. Simply put; old patients had a
higher likelihood of dying in hospital than the young patients. Both the cause-specific hazard
models for the factors sex and HIV status were insignificant. This implied that, under
independence of outcome events assumption, HIV status and patient’s age did not have a

significant impact on the hazard of encountering death in hospital.

40



4.2.5. Fitted Adjusted Cause-Specific Hazard Models for the Competing Event Death

After fitting ordinary cause-specific hazard model, it was thought to still explore further the
effect of these covariates after setting other covariates constant or adjusting for the other
covariates. The table 8 show the estimates obtained after fitting adjusted cause-specific
hazards models. From table 8 in the HIV status adjusted model, patient’s HIV status was now
significant with a p-value of 0.036. The HIV negative patients had 72% less cause-specific
hazard of encountering death in hospital than the HIV positive. Being an adjusted model, this
was in context that age was constant over time and sex was similar. Patient’s age was
significant again with a p-value of 0.042. But patient’s sex was not significant. The hazard

ratio for HIV negative over HIV positive patients was 0.28.

Table 8: Adjusted cause-specific hazard (CSH) Cox models with death as failure event

Adjusted Models Hazard 95% ClI P-value
Ratio

HIV Negative (Reference: HIV Positive) 0.28 0.09, 0.92 0.036

Age 1.02 | 1.001, 1.05 0.042

Male Patients (Reference: Females) 1.28 0.70, 2.36 0.426

The same interpretation can be extended to adjusted cause-specific hazard age model. Age as
a covariate was significant with a p-value of 0.042, so was the factor HIV status with a p-
value 0.036. Sex was insignificant again. The hazard ratio for age was 1.02 (95% CI: 1.001,
1.05). This meant that every time age was a year higher, the hazard of encountering death as
an outcome event increased by about 2%. This implied that with a unit increase in age the
hazard of encountering death in hospital increased by 2% among the patients. Since the
hazard is usually positive correlated with the probability of encountering the event, the older

patients were more likely to die in hospital than the youngerpatients.
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The adjusted cause-specific hazards model for patient’s sex had patient’s sex itself not

significant as a covariate. Because of that, no interpretation was made on it.

The cause-specific hazards were followed up by a graphical visualization of the hazard
curves for the HIV positive patients and HIV negative patients when ‘death in hospital” was
failure event. Figure 7 shows the smoothed cause-specific hazard curves for patients’ HIV
status.From figure 7, the cause-specific hazard curves share similar shapes but the hazard
curve for the HIV positive is way above the hazard of the HIV negative. The hazards are at

their highest points between the fifth and sixth days.
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Figure 7: Smoothed cause-specific hazard function for HIV status when the failure event

was ‘death’.

4.2.6. The Results for the Subdistribution Hazard Models

The last models to be fitted were the subdistribution hazard models. They provide a good
check for the independence of events assumption made when implementing cause-specific

hazards models. Table 9 shows the unadjusted estimates vyielded after fitting three
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subdistribution hazard models for each covariate for the failure event discharged. The results

for the cause-specific model are also presented for comparison purposes:

Table 9: Estimates of subdistribution and cause-specific models for discharged event

Model Type Models Hazard Ratio | 95% ClI P-value
Subdistribution HIV Negative 1.47 1.13,1.91 0.004
Hazards (Reference: HIV Positive)
Age 0.98 | 0.97,0.996 0.002
Male Patients 0.74 0.62, 0.87 P
(Reference: Females) < 0.001
Cause-Specific HIV Negative 1.40 1.07,1.83 0.014
Hazards (Reference: HIV Positive)
Age 0.99 | 0.98,0.997 0.007
Male Patients 0.74 0.62,0.88 0.001
(Reference: Females)

The results show that the effect sizes from the cause-specific and subdistribution hazards
models were pretty much close for ’discharged’ event. This can be confirmed by comparing
the corresponding hazard ratios for both subdistribution and cause-specific hazards models.
This meant that the effect on the hazards from competing risk death was quite minimal. This
is loosely consistent with the assumptions made when implementing cause-specific hazards
that there is no trait effect on the hazard from competing events. In a scenario where cause-
specific hazards and subdistribution hazards are similar or close, the cause-specific hazards

model would be just enough.

The subdistribution hazard ratio for HIV negative patients was 1.47 (95% ClI: 1.13, 1.91) and
was significant with a p-value of 0.004. This meant that the HIV negative patient had a 47%

higher subdistribution hazards to encounter discharge in the hospital than the HIV positive
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patients. The hazard of being discharged from hospital decreased with age of a patient. The
subdistribution hazard for age was 0.98 (95% CI: 0.97, 0.996) which is not so different from
0.99 (95% CI: 0.98, 0.997) cause-specific hazard ratio realized. Male patients, with a hazard
ratio of 0.74 (95% CI: 0.62, 0.87) had a 26% lower subdistribution hazard of being
discharged from hospital. This is not far from the cause-specific hazard ratio of 0.74 (95%

Cl: 0.62, 0.88) for the male patients.

For the event death, the results in table 10 show that the effect sizes for the cause-specific and
subdistribution hazards are fairly close again. The results indicate that the covariates
interacted with the two event types but to a limited extent. Table 4-10 shows the results for

the subdistribution hazards models and cause-specific hazards models.

Table 10: Estimates of subdistribution hazards and cause-specific hazard models for death

event
Model Type Models Hazard Ratio | 95% ClI P-value
Subdistribution | HIV Negative 0.24 0.08, 0.79 0.018
Hazards (Reference: HIV
Positive)
Age 1.03 | 1.004,1.05 0.019
Male Patients 1.36 0.75, 2.50 0.315
(Reference: Females)
Cause-Specific HIV Negative 0.28 0.09, 0.92 0.036
Hazards (Reference: HIV
Positive)
Age 1.02 | 1.001, 1.05 0.042
Male Patients 1.28 0.70, 2.36 0.426
(Reference: Females)
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The cause-specific hazard estimates and subdistribution hazard results were close or fairly
similar by looking at the hazard ratios and coefficients. This again validates the assumption

of independence of events made when applying cause-specific hazards.

From table 10, it is clear that the effect of patients’ sex on cause-specific or subdistribution
hazard were not evident enough by looking at the p-values or the corresponding confidence
intervals. The patient’s HIV status and age came out perfectly significant. With a
subdistribution hazard ratio of 0.24 (95% CI: 0.08, 0.79), HIV negative patient had by far less
hazard of encountering death in hospital. Single unit older patients had a 3% higher hazard of
encountering death in hospital as compared to one year younger patients. Sex was

insignificant in the model with a p-value of 0.315.

On the health outcomes of the patients; 702 (84.3%) were discharged alive from the hospital,

127 (15.7%) were reported to have died in hospital while receiving medical treatment.

4.3. Model Assumptions and Goodness-of-Fit

This section presents the results for the assessment of model adequacy. The proportional
hazards assumption for the Cox model was performed. Cox-Snell residual test was performed
to goodness-of-fit and Martingale residual plot were used to assess function form of the

covariate age.

4.3.1. Checking the Proportional Hazards Assumption of the Cause-Specific Hazards

for the Event Discharged

Table 11 below presents the results obtained after carrying out proportional hazards
assumption test on the three cause-specific models fitted in section 1.2.3. The failure event

was patients being discharged from hospital.
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Table 11: Proportional hazards assumption test for the three cause-specific hazard models

CSH Model Chi-Square | DF P-Value

HIV Status 8.31 1 0.004
Patient’s Sex 1.99 1 0.158
Age 0.31 1 0.578

From the proportional hazards assumption test results for each model in the table 11, it
appears that only the model with HIV status as a covariate did not meet the proportion
hazards assumption. The null hypothesis was certainly rejected with the test p-value of 0.004.
Theremaining two models met the proportional hazards assumption by looking at their p-
values.This meant that the results from the HIV status model were not exactly accurate as the
model assumptions were violated. The proportional hazards assumption for the other two
models, patient’s sex and patient’s age, was met. This meant that for the model sex, the
results were valid and accurate as the proportional hazards assumption was met. Although the
age met the proportional hazards assumption too, further model assessment was done since

age was fitted as a continuous variable.

The linearity of residuals for patients’ age was assessed using Martingale residuals. Figure 8

presents the output results:
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Figure 8: Martingale residual plot of patients’ age and event discharge.

From figure 8, the smoother was roughly flat and horizontal, providing no indication of the
need to transform the covariate age. Therefore, with the proportional hazards assumption met,

the results from the age cause-specific model were acceptable too.

4.3.2. HIV Status as a Time-varying Covariate

Since the HIV status covariate did not satisfy the proportional hazard assumption, one of the
reasons could have been that HIV status was a time-varying covariate. In order to verify this,
another Cox model was specified with HIV status as a time-varying covariate interacting with

analysis time. The following results were yielded:
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Table 12: Patient’s HIV status as a time-varying covariate

Model Hazard 95% ClI P-Value
Ratio

Main: HIV Negative (Reference: HIV 3.05 1.71,544 | P < 0.001

Positive)

Time-Varying: 0.81 0.70, 0.94 0.005

HIV Negative

The estimated hazard ratios in Stata are split into two categories; those for constant-with-time
variable (main) and those for time-varying covariate. From the table, the hazard ratio
0.81(95% CI: 0.70, 0.94) can be interpreted that the HIV negative patients had their hazard of
encountering hospital discharge decreased with survival time. The patient’s HIV status and

survival time interacted significantly.

4.3.3. Testing the Proportional Hazards Assumption for the Cause-Specific Models of

the Competing Event Death

Two sets of cause-specific models were fit in sections 4.2.4 and 4.2.5. The failure event was
death in hospital. The first set comprised three unadjusted models and the second set was for
adjusted cause-specific. Firstly, the proportion assumption tests for unadjusted models are
presented followed by the test results for adjusted models. Table 13; show the proportional
hazards assumption test for all the three unadjusted models. From this, it can be concluded
that all models fully satisfied the proportional hazards assumption. With that met, it means all

the interpretations made about these models were valid and statistically accurate.
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Table 13: The proportional hazards assumptions test for the unadjustedcause-specific hazard

(CSH) Cox models.
CSH Model Chi-Square | DF P-Value
HIV Status 2.90 1 0.089
Patient’s Sex 0.43 1 0.513
Age 0.05 1 0.819

Table 14 presents the estimates obtained when proportional hazards assumption was tested

for all the adjusted cause-specific models. The figures in table 14 are from global tests only.

Table 14: Proportional hazards assumption test for the adjusted cause-specific hazard (CSH)

Cox models
CSH Model Chi-Square | DF P-Value
HIV Status 3.22 3 0.358
Patient’s Sex 3.22 3 0.358
Age 3.22 3 0.358

The p-value figures obtained indicates that the proportional hazard assumption was met. With
the proportional hazards assumption met, the results from the adjusted cause-specific are

statistically viable.

4.3.4. Checking the Goodness-of-Fit Using Cox-Snell Residuals Method

All the cause-specific hazard models presented earlier had to be screened for goodness-of-fit.
All of them alsomet the proportional hazards assumption except for the unadjusted HIV
status model with the event ‘discharge from hospital’ whose results were presented in table

5.This model was then followed up by fitting HIV status as a time-varying covariate.
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Goodness-of-fit as part of the objectives of this study, it was important to establish whether
the cause-specific hazard models fitted the data perfectly, or at least up to a passable level.
The cumulative hazard function of the Cox-Snell residuals was obtained. Then the
cumulative hazard function of the Cox-Snell residuals was plotted against Nelson-Aalen
cumulative hazard function. Figures 9 to 14 shows the graph obtained after fitting these

functions:
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Figure 9: Cox-Snell Residual plot for patient’s HIV status and event ‘Discharge’

Although the proportional hazard assumption was violated by the HIV status model, the
model fitted the data well by looking at how close the Cox Snell residual and Nelson-Aalen

hazard curve were.
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Figure 10: Cox-Snell Residual plot for patient’s age and event ‘Discharge’
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Figure 11: Cox-Snell Residual Plot for patient’s Sex and event ‘Discharge’

After looking and the Cox-Snell residual plots for the models with the outcome event death in

hospital, further goodness-of-fit assessment was done for the competing event death.
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Figure 12: Cox-Snell Residual Plot for patient’s HIV status and competing event ‘Death’

':.r. -
l:‘:! -
II\! -
= A
0 ) 2 ) 4
partial Cox-Snell residual
————— Melson-Aalen cumulative hazard partial Cox-3nell residue{l

Figure 13: Cox-Snell Residual plot for patient’s age and competing event ‘Death’
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Figure 14: Cox-Snell Residual plot for patient’s sex and competing event ‘Death’

The Nelson-Aalen cumulative hazard curve plot was checked whether it was linear through
the origin with a slope 1 as it was the case with the Cox-Snell residual function. From figures
9 to 14, it was observed that all models fitted the data quite well. Substantial deviations were
only observed in figure 13 where patient’s age seem to encompass some outlier records. This
model fit perfectly up to slightly beyond where Cox-Snell residuals were 0.15. Beyond that
point; there was gross departure of the Nelson-Aalen function from Cox-Snell residual
function. This meant that observations with higher values made the model not to fit the data
well. In other words, the presence of high valued subjects such as the outliers in the dataset

created undesirable effects on the fitted model.
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4.4. Discussion of the Results

The results showed how the complement of Kaplan-Meier, 1 — KM, produced higher
estimates as compared to nonparametric cumulative incidence function. At the very
beginning the 1 — KM and the cumulative incidence curve produced similar estimates. But as
time went on and as some patients experienced death instead of being discharged from
hospital, 1 — KM ended up right-censoring those observation hence higher estimates. This
led to 1 — KM deviating from the nonparametric cumulative incidence function. In an event
where competing risks are not present, 1 — KM and nonparametric cumulative incidence are
expected to theoretically produce same estimates. There curves are expected to superimpose.
But in this case where there was death in hospital as a competing event, the best model to
estimate probability that a particular event has occurred before a given time was definitely the
nonparametric cumulative incidence function. Pepe and Mori test provided a comparison test
for the groups’ cumulative incidences. In Stata and using pepemori ado file written by
Coviello (2004), the Pepe and Mori test automatically provides the comparison tests for both
the estimated curves in the event of interest setting and for the same curves in the competing

events setting without a user bothering to execute another command.

The cause-specific hazards models are best set when the assumption is that all failure events
are independent. No testwas found set to specifically test this assumption. The cause-specific
hazards also censors the other events not specified as failure events. A good way to contest
theindependence of event assumptionwas by following up the cause-specific hazards with
subdistribution hazards since the subdistribution hazards did not assume independence of
events by censoring competing events. The subdistribution hazards regression is basically
competing risk regression by the method of Fine and Gray (1999). The estimates obtained by

the subdistribution hazards were very close to those obtained by cause-specific hazards in this
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thesis. The main reason why the results from cause-specific hazard and subdistribution
hazard were close was that the event of interest hospital discharge was happening by far more
frequently than the competing event death. The closeness of the results between these two
models can also crudely guarantee the independence of events assumption that is pre-packed
with the cause-specific hazards. For this reason, the cause-specific hazards implemented in
the analysis were just enough without further obtaining the subdistribution hazards estimates.
However it has to be mentioned here that the choice between cause-specific hazards and
subdistribution hazards greatly depends on the objectives of the study (Lau et al, 2009). If the
interest is to see the biological mechanism of an intervention or any other covariate, the
model to go for would be cause-specific hazards. If the study objective is to see the
probability of an event in the presence of competing risk, then the subdistribution hazards
models are better placed. For this study, the objectives centred on probability of hospital

discharge, therefore the subdistribution hazards were better placed.

Testing the assumptions behind the models was done to ensure that the estimates obtained by
the fitted models carried water. Ignoring the test for proportional hazards assumption can cost

dearly on the creditability of the results.

Finally, testing the goodness-of-fit of the models assessed the extent to which the models
fitted the observations. The Cox-Snell residuals plot was used to test on how well the model
fitted the observations. The estimated Nelson-Aalen cumulative hazard function and the
partial Cox-Snell residuals were obtained. The Nelson-Aalen cumulative hazard was
compared to the linear residual plot with slope 1. Departures from the linear line are supposed
to indicate possible lack of fit in the results. However, it has to also be mentioned that when
plotting Nelson-Aalen cumulative hazard estimator for Cox-Snell residuals, even if there is a

well-fitting Cox model, some variability about the 45° line is expected, particularly in the
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right-hand tail (Machin et al, 2006). This is because of the effective sample caused by prior

failure and censoring.

The nonparametric Cumulative Incidence Function showed that given any dayfemale patients
were more likely to be discharged and less likely to die in hospital in comparison to the male
patients. The unadjusted cause-specific hazard for males showed 26% less hazard of
encountering hospital discharge than their female counterparts. Another notable result is that
of HIV positive patients survivorship compared to the survivorship of HIV negative patients.
The nonparametric Cumulative Incidence Function showed that HIV positive patients were at
a greater risk of dying in hospital and lower risk of being discharge in hospital as compared
to the HIV negative patients. The cause-specific hazards model estimated the risk hazard of
dying in hospital for the HIV negative patients around 70% less than that of the HIV positive
patients. This is noticeably a high difference and calls for further epidemiological research.
There could more reasons as to why the risk difference was this big. For the cause-specific
hazard, patient HIV status did not meet the proportional hazards assumption. Fitting it as
time-varying explanatory variable it came out significant with a hazard ratio of 0.81. This
meant that the length of hospital stay and hospital discharge interacted significantly.Other
important patients’ characteristics like the HIV stage and body mass index could have
possibly explained further why the difference was this big. Unfortunately these characteristics

were not captured in the SPINE dataset used in this thesis.
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

This chapter gives a summary of the study, outlines some of the recommendations for
analysis of survival data when competing risks are present and also highlights some of the

limitations of the study.

5.1. Concluding Remarks

It has been shown in this thesis how 1 — KM produces exaggerated results as compared to the
nonparametric cumulative incidence function when competing risks are available. The
cumulative incidence estimates of 1 — KM were a little larger than those obtained from
fitting cumulative incidence function. This was the case because 1 — KM treated the
competing event death in the same fashion as the censored observation. However, the
estimates of 1 — KM were not awkwardly different from those of cumulative incidence
function. This was so because patients were being discharged from hospital much more
frequently than they were dying in hospital within the 7 day follow-up period. The
nonparametric cumulative incidence function was settled for as a better estimator of
survivorship since effect of death on estimating the probability of being discharged before a

given day was nevertheless present.

The cause-specific hazard model estimates showed the prognostic effect of the covariates and
were close to those obtained by the subdistribution hazards. The closeness of the cause-
specific and subdistribution hazards was greatly attributed to the high rate occurrence of
hospital discharge as compared to the competing event death. Again this meant that death in
hospital had a reduced effect on the estimation of the hazard of being discharged from

hospital given a follow up period of 7 days.
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In an event like this where estimates from the cause-specific hazards and subdistribution
hazards produces very close results; the choice of models to go for would greatly depend on
the specific study objectives (Lau et al, 2009). As Lim et al (2010) put it, the advantages of
cause-specific hazards is that they are more clinically understandable when assessing the
prognostic effect of the covariates on a specific cause because it can be observed whether the
covariate is reducing or increasing the instantaneous probability of the event of interest
irrespective of other covariate effect. In this thesis, the subdistribution hazards are
recommended as the interest was more on estimating the probability of being discharged
from hospital given that others were dying in it. In this setting, the subdistribution hazards
provided a check of the effect of the competing risk death when estimating the likelihood of
being discharged in hospital. Nevertheless, it was concluded that it was important to follow
up cause-specific hazards with subdistribution hazards as the subdistribution hazards might
confirm or deny that the effect competing event on the estimation of the hazard of the event

of interest.

The Nelson-Aalen cumulative hazard estimator for Cox-Snell residuals showed that models
fitted the data well. A few deviations from the 45° were noted. However, even if the model
indeed fit well, some departure from the 45° is not uncommon (Machinet al, 2006). This is

because of the effective sample caused by prior failure and censoring.

In the analysis of competing risk data, it is important to present both the results of the event
of interest and the results of competing risks. This ensures a balance of information when
discussing study results and avoids overlooking the important features which may influence

the interpretation of results.

Since the patients diagnosed HIV negative and the female patients were found to be more

likely discharged from hospital within a short time, it is concluded that these were important
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factors in determining time in hospital until discharged. The cause-specific hazards model
estimated the risk hazard of dying in hospital for the HIV negative patients around 70% less
than that of the HIV positive patients. This is noticeably a high difference and calls for
further epidemiological research. The study also recommends further investigation on the
disease specific survivorship of in-patients. In this case the interest would time to discharge
for in-patients suffering from a particular disease such as malaria or tuberculosis other than

an ICD-10 class of diseases.

5.2. Study Limitations

The patients’ hospital survival results obtained in this study may have limited clinical use
mainly because the QECH SPINE dataset did not capture other important variables such as
patient’s weight, height, HIV stage, literacy levels and household income which could have

also possibly explained the health outcomes.
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