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ABSTRACT 

Background: In survival analysis studies the interest is time taken to experience an event of 

interest. However, the probability of encountering the event of interest is commonly altered 

in studies where subjects experience an event other than that of interest. The standard 

survival time analysis methods, such as Kaplan-Meier method and the standard Cox model, 

fall short of differentiating different causes when competing risks are present. This is 

overcome by using statistical models that account for competing risks. The aim of the study 

was to compare and discuss estimates from nonparametric Cumulative Incidence Function, 

cause-specific hazards and subdistribution hazards in modeling time a patient suffering from 

infectious diseases spent in hospital until discharged. Death in hospital was identified as a 

competing risk. 

Methods: The nonparametric CIF was applied to the data to estimate the probability that a 

death or hospital discharge has occurred before a given day. In addition, the cause-specific 

hazards modeled the effect of HIV status, age and patient’s sex in relation to death or being 

discharged from hospital. The subdistribution hazards which does not assume independence 

between events was also used to compare results with the cause-specific hazards. Test of 

assumptions and model diagnostics followed. 

Results: Of 829 patients suffering from infectious diseases, 438 (52.4%) were females.452 

(54.5%) patients were HIV positive, 116 (14.0%) were HIV negative and 261 (31.5%) had 

unknown HIV status. The nonparametric CIF, like the rest of models, showed that the HIV 

positive had a lower probability of being discharged in hospital than the HIV negative. The 

cause-specific hazard of hospital discharge for males was 0.73 (p<0.001). This meant that 

male patients were 27% less likely to be discharged from hospital compared to females. The 

subdistribution hazards estimates were close to those by cause-specific hazards. This 

suggested that the estimation of the hazards of encountering the event discharge was not 

affected much by the event death. 

Conclusions and Recommendation: It is important to follow up cause-specific hazards with 

subdistribution hazards as it provides a check for the effect competing events on the 

estimation of probability of occurrence of event of interest. The nonparametric CIF turned out 

a better estimator of patient’s cumulative incidence than the compliment of Kaplan-Meier. 

Keywords: Competing risk, cumulative incidence function (CIF), cause-specific hazards, subdistribution 

hazards. 
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CHAPTER 1. INTRODUCTION 

1.1. Survival Analysis Method in a Competing Risks Setting 

Survival analysis, which is also referred to as time to event analysis, is a class of statistical 

methods for analyzing data measured from a particular time point until a pre-specified 

endpoint. In standard survival analysis, an individual who experiencesa pre-specified event of 

interest within the observation period is said to have an event; otherwise an individual is set 

to be censored at the end of the study. Participants that encounter events other than that of 

interest are censored non-informatively. Thus, each study participant makes available two 

statistics quantities; follow-up time and survival outcome.However, there are other situations 

where censoring non-informatively the individuals who encounter events other than that of 

interest alters the estimation of probability of encountering the pre-specified event of interest. 

Events with such effect on each other are called competing risks. 

There are a lot of studies that involve survival time analysis, mostly the standard survival 

methods which are desperately implemented without even considering the possibility of 

competing risks among the outcome events. Clinical and Epidemiological investigators 

sometimes confine themselves only to the statistical methodologies they are familiar with 

without bothering much to find out first the possibility of engaging other methods which may 

fully address the objectives of their studies without violating assumptions. Many statistical 

techniques are based on vital assumptions that must be met before any statistical assessment 

is completed (Altman et al, 1995). Brar (2008) in his published thesis; Estimation of 

Cumulative Incidence in the Presence of Competing Risks, in the literature review found that 

despite the extensive usage of this method, it is astounding to discover that it is sometimes 

applied incorrectly or the statistical outputs interpreted inaccurately in the methods section of 
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some published materials. As a result of this, Brar (2008) concluded that, findings of research 

studies that misuse survival methods may be deemed questionable. 

One of the extensively used methods to estimate survival probabilities is the Kaplan-Meier 

product limit. The Kaplan-Meier approach provides a nonparametric estimate of the overall 

survival probability of an event interest (Kaplan and Meier, 1958). Essential to the use of the 

Kaplan-Meier estimator is the understanding of the concept of censored or incomplete data. 

Censoring transpires in studies when the exact survival time for subject be followed is not 

known. The most common type of censoring is right censoring, which indicates the survival 

time on a subject is incomplete because the subject did not have an event before the end of 

the patient’s follow up in the study. All that is known in the cases is that the survival time 

exceeds the time of last observation. The underlying assumption of the Kaplan-Meier 

technique is that censoring of subjects occurs at random; subjects are censored for reasons 

unrelated to the outcome of the study (Caplan et al, 1994). In this case, as Brar (2008) 

concluded, the probability distribution of survival times for the subjects censored should be 

comparable to those uncensored. As there is no universally recognized test of random 

censorship in survival analysis (Brar, 2008), the assessment of this assumption is left to the 

preference of the analyst, which in many circumstances in a medical research is someone 

who is not professionally a statistician. 

In survival time analysis, the subjects’ events can be grouped as either true or cause-specific 

endpoints.The statisticalimplications for each type of endpoint are not necessarily the same 

since they are based on different assumptions. Methods of survival analysis are based on the 

fundamental assumption that all subjects will ultimately fail if the follow up on each subject 

is complete (Caplan et al, 1994). In other words, if a study were tolast a sufficient amount of 

time it would be possible for investigators to observe an event for each subject. As an 

illustration, a true survival endpoint include: overall survival where the event of interest is 
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death from any cause. Methods developed to analyze such data assume the underlying cause 

for censoring observation is independent to the underlying mechanism for event occurrence 

(Caplan et al, 1994). In principle, this means that subjects who are censored in a study are at 

equal risk of developing the event of interest compared to those who are still being followed 

but have not developed the event. This is what is referred to as non-informative censoring. 

Study participants at risk of two or more causes of failure are analyzed by methods that allow 

for competing risks. Kleinbaum and Klein (2005) mentioned that presence of competing risks 

precludes the occurrence of another event under examination or fundamentally alter the 

probability of occurrence of this other event. For example the Queen Elizabeth Central 

Hospital (QECH) adultin-patient data used in this thesis, the interest was to model time until 

a patient was discharged from the hospital but the competing risk of dying while receive 

medical treatment precluded the onset of being discharged alive. As a result, subjects who 

experienced death were not at risk of eventually being discharged alive from hospital. This is 

a typical example of cause-specific endpointand censoring subjects who develop another 

event is referred to as informative censoring, which violates a fundamental assumption of the 

Kaplan-Meier method. Therefore, different methods must be applied for cause-specific 

endpoints prone to informative censoring. The Figure 1 illustrates the notion of competing 

risks where there are up to   possible causes of failure.  

 

 

 

 

Figure 1: Competing risks situation with k causes of failure. 

Cause 2 

 

Subject under Study 

Cause 1 

Cause k 
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One of the mathematical definitions of competing risks is related to the joint distribution of 

time and cause of failure. In the following section the theoretical snippets of this joint 

distribution are presented. 

1.2. Presenting Competing Risk Method as Bivariate Random Variable 

Pintilie (2006) in the book Competing Risks: A Practical Perspective presented a 

mathematical way of expressing competing risk method as a bivariate random variable. For 

each subject the pair (   )  is observed, where     is the time of failure and   

{       } is the failure cause. T is assumed to be continuous and positive random variable 

while   belongs to exactly one of   different failure types. If an event of type   occurs first, 

   ,   is then the time at which this event occurred. The joint distribution between   and 

  is completely specified by either cumulative incidence functions, say   ( ), or the cause 

specific hazard function, say   ( ). 

The cumulative incidence functions, CIF, for failure of type   is defined by 

  ( )   (       ) 

For     and   {       }  and corresponds to the sub-distribution function for the 

probability of failure from cause   in the presence of the competing events. 

1.3. Issues with some Survival Analysis Models 

When it comes to estimating cumulative incidence the tradition in the past has been 

calculating one minus the Kaplan-Meier survival probability. Estimating  –  , the failures 

from competing event are treated as censored at the time this event occurs. This way, the 

assumption is that the patients failing from a competing risk are no more or less likely to fail 

from the cause of interest than the patients still at risk beyond this time (Coviello, 2008). 
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When the aim is to estimate the failure probabilities, this censoring is inappropriate because, 

after a competing event has occurred, failure from the cause of interest is no longer possible. 

This is the case since the competing events are assumed to be mutually exclusive. 

Kim (2007) also mentioned how the complement of Kaplan-Meier is not an appropriate 

estimate of cumulative incidence functions. Although      is conceptually easy to 

understand and easy to calculate, the estimates are biased if there is more than one type of 

event and if the events are dependent. This bias arises because the      method assumes 

that all events are independent, and thus, censors events other than the event of interest. This 

type of censoring is what it is referred to as non-informative censoring (Satagopan et al, 

2004).  

The other commonly used competing risk models are the cause-specific Cox models. The 

cause-specific Cox analysis is applied mostly to explore the pure effect of the covariates. The 

competing events are censored. As Tai et al (2011) put it, cause-specific Cox models are not 

on their own adequate for modelling competing risk data as such censoring is assumed to be 

non-informative. The authors also mentioned how this procedure fails to consider that those 

who have experienced a competing event can never experience the main event of interest. 

Therefore there is a need to follow up cause-specific Cox model with subdistribution hazards. 

Only when it has been established that the subdistribution estimates are not different from the 

proportional cause-specific is the cause-specific very appropriate to fit the data. Lim et al 

(2010) also mentioned that the choice between Cox cause-specific hazards and 

subdistribution hazards is methodically tailored to the objectives of the study in question. 

1.4. Competing Risk Data Assumptions 

Underlying this discussion of competing risk data is the existence of two important 

assumptions. First, it is assumed that the set of   competing events are mutually exclusive 
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and exhaustive. The second assumption is that subjects can experience only one type of event 

at any particular time point. Models used in competing risk setting come with their own 

assumption too. The nonparametric cumulative incidence function has the least or no 

assumptions at all on the data. The semiparametric models do not make any assumption on 

the shape of the baseline hazards but assumes that it is the same for all events. The parametric 

models make assumptions on the shape or distribution of the hazard function. 

1.5. Objectives of the Study 

The intent of this thesis was to identify and evaluate suitable competing risk models of time 

to discharge from hospital among the adult in-patients suffering from and treated for 

infectious diseases admitted at the QECH. Death in the hospital was identified as a competing 

event. The prognostic factors associated with these two outcome events; patient’s age, sex, 

and HIV status were evaluated. 

1.5.1. Specific Objectives 

1. To compare the estimates probability of failure obtained by the fittingthe complement 

of Kaplan-Meierand nonparametric cumulative incidence functions; then to also 

establish whether the probabilities of failurefor males and females, and the HIV 

positive and the HIV negative were significantly different from each other using the 

Pepe and Mori test. 

2. To interpret and compare the survival hazards obtained from fitting the 

semiparametric cause-specific Cox models and subdistribution hazard models; 

interpret the results and explain possible differences between these the cause-specific 

and subdistribution hazards for the QECH spine data. 
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3. To perform diagnostics with an aim of establishing goodness of fit on the cause-

specific Cox model and subdistribution models fitted to the data and interpret the 

diagnostics results thereafter. 
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CHAPTER 2. THE REVIEW OF LITERATURE 

2.1. Methodological Issues 

Several authors, in the past, expressed concern about the methodological problems coming up 

in the analysis of cohort studies or clinical trials when competing risks were present (Gooley 

et al, 1999). Investigators would either ignore the competing events by simply doing standard 

survival analysis (Kim, 2007) or embraced biased estimators of cumulative incidence 

function. Competing risks occur frequently in cancer research even though their presence 

may not always be recognized at the time of analysis. As highlighted in the introductory part 

of their article Coviello and Boggess (2005) defined a competing risk as an ‘event whose 

occurrence precludes or alters the probability of occurrence of main event under 

examination.’ In this setting, the appropriate estimate of the probability of failure is best 

described by the cumulative incidence. Cumulative incidence of an event is often of interest 

in medical research and frequently presented in medical articles (Kim, 2007). Previously this 

had been a huge problem since many statistical software packages could not calculate the 

cumulative incidence (Gooley et al, 1999). 

2.2. Handling Cause-specific Endpoints 

Cause-specific failure probabilities are used to account the likelihood of a subject failing 

from a specific event when there is possibility of failing from other events. Methods of 

estimating cause-specific failure probabilities have been available for quite some time but 

remain under-utilized in  biomedical literature; the reason for this not well known (Pepe et al, 

1993). A couple of studies have been conducted in Malawi in the public health setting 

applying competing risk models. One of the most recent studies to apply competing risk 

model, Weigel et al (2012) applied subdistribution to assess the mortality and loss to follow-
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up in the first year of anti-retroviral therapy (ART). A great study although cause-specific 

hazard models were never used. This means that the possibility of independence between the 

outcomes mortality and loss to follow-up was never assessed. Although the use of competing 

risk models is gaining ground now, there use is not as high as expected. Perhaps from the 

technical standpoint, the methods have a predisposition of being mathematically challenging, 

and deal with the less-than-ideal situation of dealing with more than one event. From the 

applied side, the reason is most likely lack of awareness among clinical investigators of 

alternative methods that can be applied. 

As one way of promoting the implementation of competing risk models over compromised 

methods like the complement of Kaplan-Meier estimate, Satagopan et al (2004) published a 

non-technical review, aimed at the applied clinical investigators, recommending and 

signifying the use of competing risks survival analysis using the cumulative incidence 

function. The function they explicate was not new in that this is the most common approach 

to estimate probabilities in the presence of competing risks. A number of authors have 

examined the estimation of failure probabilities within the competing risks framework. Some 

of the issues are presented in the following paragraphs. 

Gooley  et al (1999), offered an alternative representation of the cumulative incidence and the 

complement of the Kaplan-Meier (  –    ) utilizing Efron’s concept of reallocating censored 

observations to the right censored group. They illustrated in their research paper that the 

  –     estimator reallocated competing events to the right censored group in the same way 

that censored observation were moved to the right, which wrongly assumed that failure from 

the event of interest was still possible. However, the cumulative incidence estimator removed 

subjects experiencing the competing event from the risk set and only reallocated the censored 

observations to the right censored group. Hereafter if a subject failed from the competing 
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event, the contribution to Gooley’s representation of the cumulative incidence is zero. In 

comparing these two estimators, if no competing risks are available, the cumulative incidence 

and   –     yield exactly similar curves. If there are competing risks, the   –     estimate is 

overblown resulting in biased estimate of failure. Besides, Gooley et al (1999) emphasized 

that the cumulative incidence is founded on the hazard of the event of interest as well as the 

hazard of the competing risks whereas the   –     is just a function of the hazard of failure 

from the event of interest. 

In their paper Analysis of the Probability and Risk of Cause-specific Failure, Caplan et al 

(1994) find out that the mechanism of early failure differs from that of late failure in studies 

involving radiation therapy. For a thorough analysis of local failure the authors advocated the 

use of the cumulative incidence function. The authors concluded that the cumulative 

incidence estimator is of particular importance when estimating failure probabilities at a 

given time but pointed out the estimator failed to convey overall risk for the patient 

population yet to experience the event of interest. To get over this challenge, they 

recommended displaying a plot of the cumulative hazard rate, which increased as risk 

increased but was also difficult to interpret as it lacked a direct probability interpretation. 

Another approach advocated was tocalculate the cumulative conditional probability. 

After estimating the cumulative incidence of an event, it is often of interest to determine 

whether there is a difference in cumulative incidence rates among different treatment groups. 

In standard survival analysis, this is done using the log-rank test to compare curves generated 

via      method. In the presence of competing risks, however, this is inappropriate, for 

the same reason given for     . Instead, Kim (2007) cited in his paper that Gray (1988) 

investigated this issue and proposed a class of tests for comparing cumulative incidence 

curves of a particular type of failure among different groups in the presence of competing 
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risks. As cited by many authors in their journal articles, Pepe and Mori (1993) give a method 

for comparing the cumulative incidence curves directly. In Stata 10, if you are using a Stata-

certified ado file written by Coviello, this method gives out comparison results for both the 

cumulative incidence curves estimated from event of interest and the curves from competing 

events (Cleves et al, 2010). 

2.3. Prognostic Factors in Competing Risk Data Analysis 

When the difference in the cumulative incidence curves has been established among different 

treatment groups, it is also important to determine whether this difference is solely due to 

treatment or to the confounding factors, such as age. This question is usually fixed by fitting 

cause-specific Cox model for a particular failure, treating other competing risks as censored 

(Kim 2007). However, the effect of a covariate on an event from either a cause-specific 

model may be different from the effect of the covariate of the event in the presence of 

competing risks (Kim 2007). 

Cause-specific hazards and corresponding hazard ratios are estimated using Cox proportional 

hazards model for each failure event. Cause-specific hazards estimation is most commonly 

used method of analysis in a competing risk setting (Kleinbaum and Klein, 2005). Cause-

specific hazards give insight into the biological mechanism of subject under investigation 

since they have independent assumption among the competing events.  

The comparison of the cause-specific hazards is made as if the other types of events did not 

exist. This approach is regarded by a good number of investigators as unrealistic (Kim 2007). 

However, Pintilie (2006) in his book Competing Risks stressed that the use of cause-specific 

hazards is a good way of analyzing the data when one wants to find the biological mechanism 

underlying the specific outcome.  
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On the other hand, comparing the cumulative incidence functions is more direct; it takes into 

account all types of events and does not assume independence between times to the different 

types of events. However, Pintilie (2006) further argues that the cumulative incidence 

function for the event of interest can be low just because the risk of a competing risk event is 

high. On contrary, the cause-specific hazards regression is invariant to the size of the 

competing risks. Hence, the simple comparison of the cumulative incidence function for the 

event of interest is not sufficient and needs to be enhanced by the comparison of the 

cumulative incidence function for the competing risks as well (Coviello and Boggess, 2004). 

2.4. The Subdistribution Hazards 

Using Cox models alone to model the cause-specific hazards for the event ‘hospital 

discharged’ with the covariate say, patient’s HIV status, then the resulting cumulative 

incidence functions for the discharged that assess the HIV status effect will depend on the 

following five things; (1) the baseline hazard for being discharged; (2) the baseline hazard for 

dying in the hospital; (3) the effect of HIV status on the hazard for being discharged; (4) 

effect of HIV status on the hazard for dying in hospital; and finally, (5) time itself. There is 

no way to summarise how the HIV status affected the incidence of discharged without taking 

all these factors into account (Cleves et al, 2010). Furthermore, with this Cox analysis 

method you are not even guaranteed that the cumulative incidence for one group will always 

be greater than that for the other: the curves could cross at one or more points. 

Fine and Gray (1999) solved this mystery by proposing a regression modeling applied 

directly on a cumulative incidence function for a particular use in a competing risks analysis. 

It is much easier to interpret for cumulative incidence functions. They imposed a proportional 

hazards assumption on the subdistribution hazards and gave estimators and large samples 

properties. The subdistribution hazard model is formulated in a similar manner as the cause-
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specific Cox model, except that the exponential of the regression coefficients now denote the 

subdistribution hazard ratios of the respective covariates on the subdistribution hazard of 

event, say  . 

This method takes into account other events and does not make any assumptions about their 

independence between the event time and censoring distribution. In other words, the 

censoring mechanism is independent of disease progression. Estimation of the covariates 

coefficients for the models on cause-specific and subdistribution hazards follows the partial 

likelihood approach used in the standard Cox model. However, the difference between cause-

specific and subdistribution hazards lies in the risk set (Lim et al, 2010). For the cause-

specific hazards, the risk set decreases at each time point there is an event of another cause. 

For the subdistribution hazard a person who has an event from another cause remains in the 

risk set. 

2.5. The Admission Data and Competing Risk Models 

This thesis applied and compared the performance of      and nonparametric cumulative 

incidence; it also compared the cause-specific and subdistribution hazards with an aim of 

assessing the degree of association between the event of interest and the competing event. 

Discharged from hospital was the outcome of interest and dying in the hospital was 

considered as a competing event. The aim was illustrate the implementation of prominent 

competing risk models often used on epidemiological data and to explore the effect of HIV 

status, age and sex on the time spent in hospital until discharged. Implementation of 

competing risk models took care of those who died as having encountered another event. The 

nonparametric cumulative incidence were applies to estimate overall probability of 

encountering an event; be it the main event or competing. This model was considered for its 

very little assumptions it makes on the data. The cause-specific Cox models were applied to 
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explore the pure effects of individual covariates on the survival time. The subdistribution 

hazard models were implemented as a semiparametric approach to the cumulative incidence. 

Unlike cause-specific hazard models, the subdistribution hazard models do not just right 

censor the competing events when they occur but consider them as another type of events 

altogether. The subdistribution hazard models also demonstrate the effect of variables by 

giving out the subdistribution hazards ratios for each variable.  
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CHAPTER 3. METHODOLOGY 

3.1. The Data and Study Population 

As clearly highlighted in the preceding chapters, the major interest in this thesis was to model 

time spent in hospital until a subject was discharged within the observational period of 7 

days.  

The data used in this thesis was in-patient data collected at the QECH for patients 14 years 

old or above. Baobab Health Trust, a non-governmental organisation based in Lilongwe, 

collaborated with the Ministry of Health and Malawi Liverpool Wellcome Trust for 

deployment of a computerized real time data collection systems to the QECHfor their 

Surveillance Programme of In-Patients and Epidemiology (SPINE) project. The information 

system recorded, tracked and managed in-patient care and appointment data. The patient 

registration system allowed all patients to be recorded with relevant details. Using a unique 

barcode for each, it was able to identify patients so that their records could be retrieved from 

system in future visits by simply scanning their assigned barcodes.Having each patient's 

summary record stored in a computer system meant that whenever a patient was there to seek 

care from QECH, those treating them would have secure access to summary information to 

assist with diagnosis and care, and to also know how many times a patient visited the facility. 

The SPINE data was availed for this thesis in a Microsoft Excel spreadsheet format. It 

covered patients’ diagnosis and admission information from December 2010 to June 2011. 

As of now, the SPINE data is still being collected on daily basis as part of Health 

Management Information System (HMIS). This is greatly linked to monitoring and 

evaluation of the healthcare provided. The interest was to model time the adult in-patients 

suffering from infectious diseases spent in hospital until discharged. Competing risk models 

were applied regarding death as a competing event. 
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The endpoints of time spent in hospital were the health outcomes as listed in the SPINE 

dataset. There were five outcomes or five ways to end one’s hospitalization span; (1) 

discharged alive (and probably better), (2) dying in hospital, (3) transferred out to a different 

hospital, (4) referred to another facility, and finally (5) absconding. The main interest was 

time in days to discharge. Out of the five listed outcomes, only discharge and death occurred 

frequently hence the other outcomes were ignored as they were very rare events. Only those 

that died in hospital and those that were discharged produced comparable figures to conduct 

statistical analysis and were kept within the study population for this thesis. The event of 

interest being discharged from hospital, death before being discharged was thought as a 

competing risk event. Only patient’s first recorded admission visit was used in the analysis. 

The dataset used in this study contained only adult in-patients’ information and not any out-

patients’ information. An adult here was defined as any individual 14 years of age and above. 

Therefore, the study participants were the admitted adult patients whose information was 

collected and saved in the SPINE database. Since the QECH is the only public referral 

hospital in the South-Western Medical Zone, these patients are generally from the districts 

making up the South-Western Medical Zone. These districts are Blantyre itself, Chiladzulu, 

Mwanza, Neno, Thyolo, Chikwawa and Nsanje. Patients coming to seek healthcare at QECH 

for the first time were assigned a spine barcode which comprised a unique number and 

computer identifiable bars or stripes. This enabled the computer system to identify a patient 

every time he or she comes to seek healthcare at QECH and allowed each patient’s medical 

history to be collected and stored electronically for reference.  

The diseases and disorders recorded through the process of medical diagnosis were too 

numerous to be statistically considered separately. As such, the diseases and disorders were 

put into categories as per the international classification of diseases (ICD – 10). The ICD – 10 

is a World Health Organisation sanctioned method of putting diseases into groups. After 
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categorizing the diseases, only patients suffering from the infectious diseases were kept in the 

dataset for analysis. Concentrating on one disease group ensured that there was statistical 

homogeneity and that variations due to diseases group type or disorder group type were taken 

care of. Infectious disease category comprised among others diseases such as all kinds of 

tuberculosis, sepsis, urinary tract infection, meningitis, and malaria. The reason for settling 

on infectious diseases was partly that these categories comprised most suffered and 

reportedly most life threatening diseases in Malawi. It was interesting and important to know 

length of hospital stay information of patients suffering from infectious diseases and 

receiving treatment under ordinary clinical conditions at QECH. 

The length of time spent in the hospital was measured in days. The entry point into the study 

was the day a patient was admitted into the hospital and the exit time was the time a patient 

either died or was discharged from the facility. Since there were competing outcomes in this 

study, the Cox models were applied with the focus on cause-specific hazards and not standard 

hazards. For the same reason the cumulative incidence function was opted over the survival 

function. The estimation of probability occurrence by time, say  , for a particular failure can 

be handle by fitting     , the complement of Kaplan-Meier estimator, or cumulative 

incidence function. The estimator      was opted out because of bias when dealing with 

competing events. Nonparametric cumulative incidence function was a better replacement 

and posed as a rational comparison to the      as both model are purely nonparametric in 

nature. The cause-specific hazards assume independence among the competing events and are 

only suitable when biological mechanism of the covariates is of interest. Otherwise they right 

censor competing events whenever they occur. To overcome this, the subdistribution hazards 

model by Fine and Grey (1999) were implemented as they recognize a competing event when 

it has occurred and takes care of competing events when coming up with hazard functions. 

The other models that can be used in a competing risk setting include the multinomial 



 

18 
 

logistic. It assumes that the covariate effect is constant across events and assesses whether the 

baseline hazard is varying across events. The multinomial logit models were not considered 

for this thesis as they could not help to achieve the objectives set for this study. The following 

sections present the statistical procedures, relevant mathematical characteristics of the models 

in this thesis. 

3.2. Standard Single Event Time Model 

In follow-up studies the exact survival time is only known for those study participants or 

units who show the event of interest during the follow-up period. For the others all one can 

say is that they did not show the event of interest during the follow-up period. These study 

participants or units are called censored observations. Individuals can be right censored, left 

censored or interval censored. Subjects are right censored if it is known that the event of 

interest happened sometime before the recorded follow up time (Kleinbaum and Klein, 2005). 

An attractive feature of survival analysis is that we are able to include the data contributed by 

censored observations right up until they are removed from the risk set. 

Standard survival data measure the time span from some time of origin until the occurrence 

of one type of event. In such a case, the Kaplan-Meier product limit estimator is frequently 

used in describing time to event experience of the subjects under study. The standard survival 

data can also be presented as a bivariate random variable, say (   ), where     is time to 

event of interest and   {   } is the failure cause. D here is the censoring variable,     

if the event of interest was observed, and     if the observation as censored. When     , 

then   is the time at which the event occurred and when     is the time at which the 

observation was censored. 

In general as Pintilie (2006) put it, given T as a random variable representing survival time 

that has a density function,  ( ), and distribution function,  ( ). The survival function at 
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time  ,  ( ), is defined to be the probability that the survival time is greater than t, where 

 ( )   (   )     ( ). The survival function, therefore, represents the probability that 

an individual survives from the origin to sometime beyond  . The hazards function or hazard 

rate,  ( ), is the probability that an individual encounters an event of interest at time  , 

conditional on having survived to that time, which is defined as: 

 ( )     
    

{
 (            )

  
} 

The hazard function, therefore, represents the instantaneous death rate for an individual 

surviving up to time t and provides full characterization of the distribution of T. 

The main concern with this approach is how to study the impact of covariates of the 

distribution of T. To do this, we assume the variation in the distribution of event and 

censoring can be characterized by a vector of observed explanatory variables, say Z, which 

can be either time-invariant or time-dependent covariates. Under Cox proportional hazards 

model, the hazard function for the event time T associated with the covariates Z is defined as 

follows: 

 ( )    ( ) 
    

Where the function   ( ) is an unspecified baseline hazard function and gives the shape of 

the hazard function. If all explanatory variables are zero, the hazard function will be the 

baseline hazard   ( ). If two individuals have identical values of the measured covariates, 

they will have identical hazard functions. 

3.3. Cause Specific Hazards Models 

Again as stated in the previous chapters, competing risks in survival analysis refer to a 

situation where subjects under investigation are exposed to more than one possible type of 
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events. Thus, each subject is associated with a pair (   ) where   is the time to event and 

  {       }is the type of the event for that subject (Pintilie, 2006). In this case there are   

possible causes of failure. The cause-specific hazard function in the competing risks model is 

the hazard of failing from a given cause   in the presence of the competing events as shown 

mathematically below (Kleinbaum and Klein, 2005): 

      
    

{
 (                )

  
} 

With   {       }. With covariates incorporated in it, the regression model on cause-

specific hazards is given as: 

  (   )     ( ) 
    

The total hazard,  (   ), equals the values of its corresponding hazards function summed up 

to time  . It is then 

 (   )  ∑  ( )

 

   

 

This equation implies that the all-cause hazard rate is the sum of K hazards. 

The cause-specific hazard can be modeled using the Cox model, which is broadly used in 

medical research. The cause-specific hazard model may be more clinically understandable 

when assessing the prognostic effect of the covariates on a specific cause because it can be 

observed whether the covariate is reducing or increasing the instantaneous probability of the 

event of interest irrespective of other covariate effect. 
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3.4. Nonparametric Cumulative Incidence Function 

With competing risk data, the cumulative incidence curve derived from cause-specific hazard 

functions provides important event information for a specific cause. Marubini and Valsecchi 

(1989) derived the cumulative incidence estimator for the failure k as 

 ̂  ∑  ̂

      

(    )
   

  
 

Where  ̂(    )  is the Kaplan-Meier estimate of the overall survival function, that is, 

considering failures of any kind, and the second factor is an estimate of the hazard of failure 

 . This definition implies that the cumulative incidence is a function of the hazards of all the 

competing events and not solely of the hazard of the event to which it refers. This equation 

further shows that the sum of all cumulative incidences equals    ̂( ), the complement of 

the overall Kaplan-Meier estimate of survival considering failures of any kind. 

The variance estimator for the distribution of this formula is as follows (Caviello and 

Boggess, 2004): 

   { ̂ (  )}  ∑ [{ ̂ (  )   ̂ (  )}
   

  (     )
]

 

   

 ∑{ ̂(    )}
 
(
      

  
)

 

   

(
   

  
 
) 

  ∑{ ̂ (  )   ̂ (  )}

 

   

{ ̂(    )} (
   

  
 
) 

Where    ∑    
 
    and   is the number of causes of failure. It was report by Caviello et al 

that a general formula was derived by Dinse and Larson (1986) using the delta method. 



 

22 
 

3.5. A Comparison of Cause-Specific Hazards Regression and Cumulative 

Incidence Function 

The probability that the event occurs before time   can be derived from the hazard through an 

equation. So, the hazard completely describes this probability distribution. The higher the 

hazard, the higher the probability that the event occurs before   and vice versa. 

In competing risk situation, the probability that the main event occurs before time t 

(cumulative incidence) depends on both the hazard of the main event and the hazard of the 

competing event. Thus, there is no obvious relationship between the hazard and the 

cumulative incidence of the main event, the latter depending on the hazard of the competing 

event too. 

In competing risk situation the cause-specific hazard and the cumulative incidence do not 

convey the same pieces of information. The former tells about the biological mechanism 

underlying the specific outcome. The latter informs us about the probability and, therefore, 

the actual number of patients failing from a specific cause, taking into account that this type 

of event could not have been observed, hindered or precluded because of another type of 

event. 

3.6. Subdistribution Hazards Regression 

Fine and Gray (1999) developed an alternative semiparametric model that considers all 

important factors in a competing risk setting. These factors are the baseline hazard effect for 

the outcome events, the covariate effect for the outcome events and the effect of time itself. 

They define the subdistribution function for failure cause   as 

  ̅( )  
 {                                     (                   )}
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This means that the subdistribution hazards for cause   is the instantaneous probability of 

failure from cause   at time   given either no failure before   or failure from another cause 

before  . The subdistribution function appeal arises from the fact that the cumulative 

incidence function for a particular cause   is a function of the subdistribution hazard only for 

cause  . Mathematically this can be presented as; 

    ( )       { ∫  ̅( )  

 

 

} 

Where the integral on the right is the cumulative subdistribution function,   ( )̅̅ ̅̅ ̅̅ ̅. In other 

words, if you define a regression model for   ̅( ), you can use it directly to directly interpret 

covariate effects on     ( ) because there is a direct correspondence between the two. 

The Fine and Gray model is a direct analog to Cox regression with the subdistribution 

hazards taking the place of traditional hazards functions. Their model for subdistribution 

hazards for cause I is  

  ̅(   )      
̅̅ ̅̅ ( )   (  ) 

For covariate vector   and baseline subdistribution hazard function     
̅̅ ̅̅ ( ) . As in Cox 

regression, this model is semiparametric in that we assume no functional form for the 

baseline subdistribution hazard. The effects of covariates are assumed to be proportional too. 

3.7. Time Varying Covariates 

Kleinbaum and Klein (2005) defined time varying covariate as any covariate whose value for 

a given subject may differ over  . In contrast, a time-independent variable is a variable whose 

value for a given subject remains the same over  . The general form of the Cox proportional 

hazards model, as presented earlier, is as follows: 
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 (   )    ( ) 
    

This model gives an expression for the hazard at time   for an individual with a given 

specification of a set of explanatory variable vector  . The Cox model formula says that the 

hazard at time   is the product of two quantities; the baseline hazard   ( )  and the 

exponential expression     . An important feature of this formula, which concerns 

proportional hazards assumption, is that the baseline hazard is a function of   but does not 

involvethe  ’s, whereas the exponential expression involves the  ’s but does not involve  . 

In this case the X’s are called time-independent covariates. 

There is a possibility, nevertheless, to consider  ’s that do involve  . If time-dependent 

variables are considered, the Cox model form may still be used, but they no longer satisfy the 

proportional hazard assumption. These models are commonly referred to as the extended Cox 

models. 

When time-dependent variables are used to assess the proportional hazard assumption for a 

time-independent variable, the Cox model is extended to contain interaction terms involving 

the time-independent being assessed and some function of time. 

3.8. Checking the Model Assumptions and Diagnostics 

Basically, there are three types of models considered in this thesis. These are nonparametric 

cumulative incidence function, cause-specific hazards Cox, and subdistribution hazards 

model. Each one of these was fit taking into account the assumptions that the model make on 

the data. 
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3.8.1. The Proportional Hazards Assumption 

The Cox proportional hazard model assumes that the hazard ratio comparing any two 

specifications of the predictors is constant over time. This also means that the hazard for one 

individual is proportional to the hazard for any other individual, where proportionality 

constant is independent of time (Cleves et al, 2010).  

As Cleves et al (2010) put it; the Cox model formula says that the hazard at time   is the 

product of two quantities. The first of these is the baseline hazard function, which is only a 

function of   and does not involve the explanatory vector  . The second quantity is the 

exponential expression   to the linear sum of      where the sum is over the   explanatory   

variables. The exponential expression does not involve  . The proportional assumption is not 

met if the graphs of the hazards cross for two or more categories of a predictor of interest. 

However, as put by Kleinbaum and Klein (2006), even if the hazard functions do not cross, it 

is possible that the proportional hazards assumption is not met. 

3.8.2. Goodness-of-Fit 

Model diagnostics are applied to identify unexpected characteristics of the data that may 

seriously influence conclusions or require special attention. The detection of influential 

observations, that is observation whose deletion, either singly or multiply, result in 

substantial changes in parameter estimates, fitted values or tests of hypothesis. 

Diagnostic methods are generally based on residuals. Standardized residuals will be produced 

and assessed, where each residual is standardized by its estimated standard error. Another 

way of doing this is by correcting for the leverage of the point in the space of the explanatory 

variable. 
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3.9. Statistical Software Package 

The dataset was obtained as a single document in Microsoft Office Excel with eight separate 

working sheets. The data on these working sheets were cleaned and exported to a different 

statistical package called Stata® version 10.0. In general, Stata® is powerful, interactive and 

user-friendly software with high level applicability in inferential statistics. It has to be 

mentioned here that under ordinary circumstances Stata® 10 cannot handle nonparametric 

competing risk models. For example, the nonparametric estimation and testing of cumulative 

incidence functions requires that one download and install some Stata certified user-written 

software, which provide functionality not included in the official Stata® 10.  

To conduct the thorough analysis on nonparametric cumulative incidence functions, there 

were basically two extra programs needed from Statistical Software Components archives 

hosted at Boston College in the United States. To estimate nonparametric cumulative 

incidence functions, there was a need to first install the command stcompet by Coviello 

and Boggess (2004). To test equality of cumulative incidence functions among groups, the 

command stpepemori written by Coviello (2008) was installed. The subdistribution 

hazards were performed using Stata 11 command stcrreg which is also not available in 

Stata 10. 

3.10. The Estimates, Statistical Tests and the Level of Significance 

The summary characteristics of patients such as age and average days spent in hospital were 

presented as median and, naturally, the measure of dispersion was the interquartile range. 

Rank-based measure of central tendency and its subsequent measure of dispersion are ideal in 

survival data since survival data are typically right skewed. The Hazard ratios, their 

corresponding coefficients and 95% confidence intervals were presented for cause-specific 
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hazards and subdistribution hazards models. Also included were the calculated p-values for 

all statistics. All statistical tests were made at 5% level of significance.   
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CHAPTER 4. RESULTS AND DISCUSSION 

This chapter presents and discusses the results. Section 4.1 presents exploratory data analysis, 

the fitted models are presented in section 4.2, the assessment of model assumption and 

goodness-of-fit is outlined in section 4.3. Finally, section 4.4 presents the discussion of 

results. 

4.1. Exploratory Data Analysis 

The SPINE dataset constituted 7262 patients who were admitted at QECH between 

December 2009 and June 2011 for different diseases. Of the 7262 patients, only 829 met the 

ICD – 10 criteria as suffering from infectious diseases and were therefore included for 

analysis. Table 1 below shows the baseline characteristics of the patients. 

Table 1: A summary of characteristics of patients 

Characteristics  

N=829 

HIV Status Sex 

HIV+ HIV- Unknown Male Female 

 Patient’s Age Median 34.1 30.6 32.1 34.1 31.6 

 (Years) IQR 12 21.3 17.6 14.8 13.5 

Time in hospital 

(Days) 

Median 7 5 3 5 4 

IQR 3 4 4 4 5 

Discharged Alive 

n=486 

Frequency 222 70 194 206 280 

(percent) (45.7) (14.4) (39.9) (42.4) (57.6) 

Died in Hospital 

n=82 

Frequency 41 3 38 45 37 

(percent) (50.0) (3.7) (46.3) (54.9) (45.1) 

Censored at the end 

n=261 

Frequency 189 43 29 140 121 

(percent) (72.4) (16.5) (11.1) (53.6) (46.4) 
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The summary of baseline characteristics as presented in table 1, out of 829 patients, 438 

(52.8%) were females.  452 (54.5%) patients were HIV positive, 116 (14.0%) were HIV 

negative and 261 (31.5%) had unknown HIV status. The overall median age for 829 patients 

was 35.3 years with an IQR of 21.0. The median ages for male patients and female patients 

were close with very similar dispersion, males had a median age of 34.1 years (IQR: 14.8) 

and females had median age 31.6 years (IQR: 13.5). For the HIV positive patients, the 

median age was 34.1 years (IQR: 12.0) and the HIV negative patients’ the median was 30.6 

years (IQR: 21.3). From the interquartile ranges, it was clear that the HIV negative patients’ 

ages were much more dispersed than the HIV negative patients’ ages. The HIV positive 

patients had a relatively small interquartile range which signified that their population was 

concentrated around the maiden age 34.1 years.On the health outcomes of the patients; 702 

(84.3%) were discharged alive from the hospital, 127 (15.7%) were reported to have died in 

hospital while receiving medical treatment. 

Infectious diseases category constituted a wide range of diseases most commonly include 

different kinds of tuberculosis, urinary tract infection, sepsis, and malaria. Some of the 

admitted patients were also diagnosed with other infectious diseases such as hepatitis, 

meningitis, and measles. But there occurrence rate was relatively low henceforth bundled up 

in a sub-group called ‘other’. Table 2 presents the diagnosis results of infectious diseases as 

defined by the WHO sanctioned ICD – 10: 
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Table 2: A summary of clinical diagnoses results performed on the in-patients 

Disease 

      

Frequency 

(Percentage) 

Tuberculosis 188 (22.7) 

Urinary Tract Infection 43 (5.2) 

Malaria 223 (26.9) 

Sepsis 307 (37.0) 

Other (hepatitis, meningitis, measles, etc.) 68 (8.2) 

 

The outlying ages are also evident by segregating by HIV status. Figure 2 shows Box-plot 

diagrams showing the dispersion of age among the observations, categorized by sex and HIV 

status: 

 

 Figure 2: The Box-Plot by sex and by HIV status.   

The presence of age outliers, as shown by the Box plots in figure 2, was confirmed. Both 

female patients and male patients had outlying aged patients. The HIV status Box-plots 

shows that the distribution of the HIV positive patients is concentrated between ages 30 and 
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40, which contrasts sharply with the Box-plot of the HIV negative patients. The concentration 

of age distribution of the HIV negative is spread out across twenties to fifties. For the 

admitted HIV positive patients, this meant that prevalence was relatively high among those 

between late twenties and late thirties.  

Table 3 shows the patients enrolled as suffering from infectious disease from December 2009 

to June 2011. The lowest observed enrollment rate was 10 and that was in December 2009. 

The highest observed enrollment rate was 71 in January 2011. For the other months, the 

number of patients registered varied between these two highest and lowest figures. In the last 

month June 2011 a total of 20 patients were registered. The entire data collection span 

consisted of 19 months. The following table shows how patients’ admissions were distributed 

across months and years from December 2009 to June 2011, the data collection span for this 

dataset: 

Table 3: Patients admitted at QECH for generally suffering from regular infectious diseases 

Month Admitted 

      

Year Admitted 

2009 2010 2011 

January - 29 71 

February - 59 50 

March - 66 36 

April - 51 25 

May - 45 31 

June - 17 20 

July - 40 - 

August - 42 - 

September - 50 - 

October - 67 - 

November - 65 - 

December 10 55 - 
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Table 4 is a life table showing the survival pattern of the patients within the observation time 

of 7 days. From this table, 486 patients were discharged within the observation period of 7 

days in hospital. Of the 829 patients, 361 (43.6%) of them remained in the study after 5 days, 

the rest either died or discharged. On the seventh day, only 316 patients and were henceforth 

censored. 

Table 4: Shows the estimated survival probabilities of the days of the patients admitted at 

QECH. 

Observation 

Time  (Day) 

Beginning 

Total 

Discharges in 

Time Interval 

Estimated 

Survival 

Probability 

Standard 

Error 

  829 126 0.85 0.012 

  703 95 0.73 0.015 

  608 89 0.63 0.017 

  519 88 0.52 0.017 

  431 70 0.44 0.017 

  361 45 0.32 0.017 

  316 316 0 -  

 

In this analysis, no participant was reported lost to follow up. The estimated survival 

probabilities given in the table above were calculated under standard survival assumption 

where subject who died in the hospital were treated as censored observations.These estimates 

would be biased if the event of interest and the competing event were dependent. 

4.2. The Models Fitted 

This section presents the cumulative incidence function, cause-specific hazards, 

subdistribution hazards models that were applied to the SPINE data and their statistical 

inference implications. 
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4.2.1. The Comparison between Nonparametric Cumulative Incidence and 

     

The results obtained after fitting the nonparametric cumulative incidence function were 

compared to those of the complement of Kaplan-Meier     . As shown in the figure 4-2, 

the estimates of      were deviating far and far away from those obtained from the 

nonparametric cumulative incidence with time. The independence of competing events 

assumption made for      was clearly not valid as the curves were slowly deviating apart 

with time. In this scenario, it was important to treat death as another event, a competing 

event. Since the nonparametric cumulative incidence considers both the main and competing 

event when plotting cumulative survivorship curve, it was clear from figure 3 that the two 

events were dependent on each other to some extent. Figure 3 shows the      and 

nonparametric cumulative incidence curves. 

 

Figure 3: Comparison of      and Cumulative Incidence (CI) curves.  
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From figure 3, at time 1 both the cumulative incidence and the      model gave similar 

survival probability. As the admission days progressed the      curve gave higher 

estimates as it censored those who encountered death in the course of admission. Therefore 

the cumulative incidence function was a safer model to opt for. However, it was noted in 

figure 3 that the estimates from      and cumulative incidence function were not hugely 

different due to the fact that by far more patients were being discharged than dying in 

hospital.  

4.2.2. The Comparison of Cumulative Incidence Functions between Males and Females, 

and between the HIV Positive and HIV Negative 

The nonparametric estimation of the cumulative incidence functions for groups were plotted, 

comparing the survivorship of males and females, and the survivorship of HIV positive and 

the HIV negative patients across all ages. Figure 4-3 shows cumulative incidence curves for 

the males and females.This was the calculated probability of being discharged from hospital 

given that others died along the way.  

 

Figure 4: Cumulative Incidence by sex for the outcome ‘discharged from hospital’. 
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The cumulative incidence curves from figure 4; the curve for the females was consistently 

higher than that of males. This meant that, for whatever reasons, female patients had a 

consistent higher likelihood of being discharged from hospital than their male counterparts. 

On day 1, both cumulative incidences were below 0.20. The females’ cumulative incidence 

was approximately 0.15 and that of males was approximately 0.10. On the seventh day, the 

estimated cumulative incidence for females was 0.62 and that of males was approximately 

0.52. 

The overall cumulative incidences for both events showed that patients were more likely to 

be discharged than die in the hospital. Of course the cumulative incidence curves were 

disaggregated by HIV status but the overall incidences can be discerned from that. 

Figure 5 shows the HIV status cumulative incidences graphed by HIV status. The first graph 

shows the cumulative incidence when the event is a patients being discharged from the 

hospital, and the second graph shows cumulative incidence when death was the event that 

occurred. The cumulative incidencefor the HIV negative patients was higher than of HIV 

negative patients, this meant that the HIV negative were more likely to be discharged from 

hospital as compared to the HIV positive patients.On death as an outcome event, the HIV 

positive were by far more likely to die in the hospital than the HIV negative patients. This 

obviously meant that patient’s HIV status had an effect on the health outcome events of a 

patient admitted at the QECH. 
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Figure 5: Cumulative incidence by HIV status. The first one is for the failure event of 

being discharged; the second is for the event 'death in hospital'. 

Table 5 presents the figures obtained after running Pepe and Mori cumulative incidence 

comparison test for both the competing and the event of interest. 

Table 5: The measurements after applying Pepe and Mori cumulative incidence comparison 

test 

Extrapolative 

Factor 

Outcome Event Chi-Square (1) P-Value 

Patients’ Sex Main 

Event 

Discharged               

Competing Died               

HIV Status Main 

Event 

Discharged               

Competing Died            
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The first three p-values obtained for both events lead to the rejection of the null hypothesis 

that the cumulative incidences were similar. The p-values were all less than 0.001. For those 

discharged from hospital, it was therefore concluded that there was enough evidence that the 

male and female cumulative incidences were statistically different from each other. It was 

also concluded that the cumulative incidence curve for the HIV positive was significantly 

differently from that of HIV negative. There was association between patient HIV status and 

the likelihood of being discharged from hospital. From the cumulative incidence curves 

plotted, it is quite distinct that the HIV negative patients had a consistently higher likelihood 

of being discharged from QECH as compared to their HIV positive counterparts. Putting this 

in terms of length of hospital stay, the HIV positive patients seemed to have been spending a 

little more time in the hospital before being discharged as compared to the HIV negatives. 

The cumulative incidence by HIV status for the competing event death in hospital came out 

insignificant with a p-value of 0.435. There was no enough evidence to reject the null 

hypothesis and it was concluded that the cumulative incidences were not statistically different 

from each other. Interpreting this further in terms of length of hospital stay, there was gross 

lack of evidence about the difference in probabilityof spending time in hospital before a 

patient was died between the HIV positive and the HIV negative. 

4.2.3. The Results for the Unadjusted Cause-Specific Hazards for the Discharged 

Patients 

Three modelswere fitted each containing one of the three covariates; these being HIV Status, 

age and patient’s sex.Table 6 shows the coefficient and hazard ratio estimates gotten after 

fitting three cause-specific hazard modelsfor each covariate HIV status, age and patient’s sex. 

The reference category for HIV status was the HIV positive. The reference category for sex 

was the females. As for patients’ age, the comparison was based on per unit increase in age. 
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The failure event for these models was the event of interest, discharged from hospital. Death 

in hospital was treated as censored observation. All models were unadjusted. 

Table 6: The coefficient estimates after fitting three unadjusted Cause-Specific Hazard (CSH) 

models with ‘discharged’ as the failure event. 

CSH Model Hazard Ratio 95% CI P-value 

HIV Negative 

(Reference: HIV Positive) 

1.40 1.07 , 1.83 0.014 

Age 0.99 0.98, 0.997 0.007 

Male patients 

(Reference: Females) 

0.74 0.62, 0.88 0.001 

 

From this output, the estimate of the hazard ratio for the HIV negative patients as shown in 

the cause-specific model was 1.40 (95% CI: 1.07, 1.83).  The p-value for the Wald test was 

for this was 0.014 which is less than     . Thus HIV negative patients had a 40% higher 

hazard of encountering hospital discharge than their HIV positive counterparts. Put 

differently according to the figures presented in table 6, the HIV positivepatients had a lower 

hazard of encountering the event of interest. The cause-specific hazard modelfor patient’s age 

yielded a hazard ratio estimate of 0.99 (95% CI: 0.98, 0.997) and a p-value of 0.007.  Since 

the hazard ratio was less than 1 and age progressed by years; this meant that any patient one 

year older had a 1% less hazard of being discharged from hospital as compared to a patient a 

year less in age. Patient’s sex came out significant too with the hazard ratio of 0.74(95% CI: 

0.62, 0.88)and p-value of 0.001. Males had a 27% less chance of being discharged from 

hospital compared to females. Figure 6 presents the graphical regression results for cause-

specific hazard Cox model with HIV status as treatment variable among the patient. 
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Figure 6: Smoothed cause-specific hazards curves when ‘discharged’ is the failure event. 

Figure 6 confirms the results from table 5; females had a higher hazard of encountering the 

event of interest than their male counterparts, same with the HIV negative patients who had a 

higher hazard of being discharged. As time a patient spent in hospital was increasing so were 

the hazard curves for both the patient’s HIV status and patient’ssex, until towards the very 

end where the hazard curves seem to lower. 

4.2.4. The Results of Unadjusted Cause-Specific Model for the Competing Event Death 

The same three unadjusted cause-specific hazards modelswere fitted with failure event type 

as death in hospital. Here, now discharged patients were treated as censored observations. By 

censoring the discharged patients, it was assumed that the event discharge was independent 

from death in hospital. All models we fitted unadjusted, the results after fitting these models 

are presented in table 7: 
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Table 7: Estimates of unadjusted cause-specific hazard (CSH) Cox models with death as 

failure event 

CSH Model Hazard 

Ratio 

95% CI P-value 

HIV Negative (Reference: HIV 

Positive) 

0.33 0.10, 1.05 0.061 

Age 1.02 1.003, 1.03 0.018 

Male Patients (Reference: Females) 1.20 0.78, 1.85 0.418 

 

The cause-specific hazard model for age is the only one that came out significant when 

failure event was ‘death in the hospital’.The p-value was 0.018 and hazard ratio was 1.02 

(95% CI: 1.003, 1.03). This meant that patients a year older yielded a 2% higher hazard of 

encountering death in hospital than a year younger patients. Simply put; old patients had a 

higher likelihood of dying in hospital than the young patients. Both the cause-specific hazard 

models for the factors sex and HIV status were insignificant. This implied that, under 

independence of outcome events assumption, HIV status and patient’s age did not have a 

significant impact on the hazard of encountering death in hospital. 
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4.2.5. Fitted Adjusted Cause-Specific Hazard Models for the Competing Event Death 

After fitting ordinary cause-specific hazard model, it was thought to still explore further the 

effect of these covariates after setting other covariates constant or adjusting for the other 

covariates. The table 8 show the estimates obtained after fitting adjusted cause-specific 

hazards models. From table 8 in the HIV status adjusted model, patient’s HIV status was now 

significant with a p-value of 0.036. The HIV negative patients had 72% less cause-specific 

hazard of encountering death in hospital than the HIV positive. Being an adjusted model, this 

was in context that age was constant over time and sex was similar. Patient’s age was 

significant again with a p-value of 0.042. But patient’s sex was not significant. The hazard 

ratio for HIV negative over HIV positive patients was 0.28. 

Table 8: Adjusted cause-specific hazard (CSH) Cox models with death as failure event 

Adjusted Models Hazard 

Ratio 

95% CI P-value 

HIV Negative (Reference: HIV Positive) 0.28 0.09, 0.92 0.036 

Age 1.02 1.001, 1.05 0.042 

Male Patients (Reference: Females) 1.28 0.70, 2.36 0.426 

 

The same interpretation can be extended to adjusted cause-specific hazard age model. Age as 

a covariate was significant with a p-value of 0.042, so was the factor HIV status with a p-

value 0.036. Sex was insignificant again. The hazard ratio for age was 1.02 (95% CI: 1.001, 

1.05). This meant that every time age was a year higher, the hazard of encountering death as 

an outcome event increased by about 2%. This implied that with a unit increase in age the 

hazard of encountering death in hospital increased by 2% among the patients. Since the 

hazard is usually positive correlated with the probability of encountering the event, the older 

patients were more likely to die in hospital than the youngerpatients. 
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The adjusted cause-specific hazards model for patient’s sex had patient’s sex itself not 

significant as a covariate. Because of that, no interpretation was made on it.  

The cause-specific hazards were followed up by a graphical visualization of the hazard 

curves for the HIV positive patients and HIV negative patients when ‘death in hospital’ was 

failure event. Figure 7 shows the smoothed cause-specific hazard curves for patients’ HIV 

status.From figure 7, the cause-specific hazard curves share similar shapes but the hazard 

curve for the HIV positive is way above the hazard of the HIV negative. The hazards are at 

their highest points between the fifth and sixth days. 

 

Figure 7: Smoothed cause-specific hazard function for HIV status when the failure event 

was ‘death’. 

4.2.6. The Results for the Subdistribution Hazard Models 

The last models to be fitted were the subdistribution hazard models. They provide a good 

check for the independence of events assumption made when implementing cause-specific 

hazards models. Table 9 shows the unadjusted estimates yielded after fitting three 
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subdistribution hazard models for each covariate for the failure event discharged. The results 

for the cause-specific model are also presented for comparison purposes: 

Table 9: Estimates of subdistribution and cause-specific models for discharged event 

Model Type Models Hazard Ratio 95% CI P-value 

Subdistribution 

Hazards 

HIV Negative 

(Reference: HIV Positive) 

1.47 1.13, 1.91 0.004 

Age 0.98 0.97, 0.996 0.002 

Male Patients 

(Reference: Females) 

0.74 0.62, 0.87  

       

Cause-Specific 

Hazards 

HIV Negative 

(Reference: HIV Positive) 

1.40 1.07, 1.83 0.014 

Age 0.99 0.98, 0.997 0.007 

Male Patients 

(Reference: Females) 

0.74 0.62, 0.88 0.001 

 

The results show that the effect sizes from the cause-specific and subdistribution hazards 

models were pretty much close for ’discharged’ event. This can be confirmed by comparing 

the corresponding hazard ratios for both subdistribution and cause-specific hazards models. 

This meant that the effect on the hazards from competing risk death was quite minimal. This 

is loosely consistent with the assumptions made when implementing cause-specific hazards 

that there is no trait effect on the hazard from competing events. In a scenario where cause-

specific hazards and subdistribution hazards are similar or close, the cause-specific hazards 

model would be just enough.  

The subdistribution hazard ratio for HIV negative patients was 1.47 (95% CI: 1.13, 1.91) and 

was significant with a p-value of 0.004. This meant that the HIV negative patient had a 47% 

higher subdistribution hazards to encounter discharge in the hospital than the HIV positive 



 

44 
 

patients. The hazard of being discharged from hospital decreased with age of a patient. The 

subdistribution hazard for age was 0.98 (95% CI: 0.97, 0.996) which is not so different from 

0.99 (95% CI: 0.98, 0.997) cause-specific hazard ratio realized. Male patients, with a hazard 

ratio of 0.74 (95% CI: 0.62, 0.87) had a 26% lower subdistribution hazard of being 

discharged from hospital. This is not far from the cause-specific hazard ratio of 0.74 (95% 

CI: 0.62, 0.88) for the male patients. 

For the event death, the results in table 10 show that the effect sizes for the cause-specific and 

subdistribution hazards are fairly close again. The results indicate that the covariates 

interacted with the two event types but to a limited extent. Table 4-10 shows the results for 

the subdistribution hazards models and cause-specific hazards models. 

Table 10: Estimates of subdistribution hazards and cause-specific hazard models for death 

event 

Model Type Models Hazard Ratio 95% CI P-value 

Subdistribution 

Hazards 

HIV Negative 

(Reference: HIV 

Positive) 

0.24 0.08, 0.79 0.018 

Age 1.03 1.004, 1.05 0.019 

Male Patients 

(Reference: Females) 

1.36 0.75, 2.50 0.315 

Cause-Specific 

Hazards 

HIV Negative 

(Reference: HIV 

Positive) 

0.28 0.09, 0.92 0.036 

Age 1.02 1.001, 1.05 0.042 

Male Patients 

(Reference: Females) 

1.28 0.70, 2.36 0.426 
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The cause-specific hazard estimates and subdistribution hazard results were close or fairly 

similar by looking at the hazard ratios and coefficients. This again validates the assumption 

of independence of events made when applying cause-specific hazards.  

From table 10, it is clear that the effect of patients’ sex on cause-specific or subdistribution 

hazard were not evident enough by looking at the p-values or the corresponding confidence 

intervals. The patient’s HIV status and age came out perfectly significant. With a 

subdistribution hazard ratio of 0.24 (95% CI: 0.08, 0.79), HIV negative patient had by far less 

hazard of encountering death in hospital. Single unit older patients had a 3% higher hazard of 

encountering death in hospital as compared to one year younger patients. Sex was 

insignificant in the model with a p-value of 0.315. 

On the health outcomes of the patients; 702 (84.3%) were discharged alive from the hospital, 

127 (15.7%) were reported to have died in hospital while receiving medical treatment. 

4.3. Model Assumptions and Goodness-of-Fit 

This section presents the results for the assessment of model adequacy. The proportional 

hazards assumption for the Cox model was performed. Cox-Snell residual test was performed 

to goodness-of-fit and Martingale residual plot were used to assess function form of the 

covariate age. 

4.3.1. Checking the Proportional Hazards Assumption of the Cause-Specific Hazards 

for the Event Discharged 

Table 11 below presents the results obtained after carrying out proportional hazards 

assumption test on the three cause-specific models fitted in section 1.2.3. The failure event 

was patients being discharged from hospital. 
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Table 11: Proportional hazards assumption test for the three cause-specific hazard models 

CSH Model Chi-Square DF P-Value 

HIV Status 8.31 1 0.004 

Patient’s Sex 1.99 1 0.158 

Age 0.31 1 0.578 

 

From the proportional hazards assumption test results for each model in the table 11, it 

appears that only the model with HIV status as a covariate did not meet the proportion 

hazards assumption. The null hypothesis was certainly rejected with the test p-value of 0.004. 

Theremaining two models met the proportional hazards assumption by looking at their p-

values.This meant that the results from the HIV status model were not exactly accurate as the 

model assumptions were violated. The proportional hazards assumption for the other two 

models, patient’s sex and patient’s age, was met. This meant that for the model sex, the 

results were valid and accurate as the proportional hazards assumption was met. Although the 

age met the proportional hazards assumption too, further model assessment was done since 

age was fitted as a continuous variable. 

The linearity of residuals for patients’ age was assessed using Martingale residuals. Figure 8 

presents the output results: 
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Figure 8: Martingale residual plot of patients’ age and event discharge. 

From figure 8, the smoother was roughly flat and horizontal, providing no indication of the 

need to transform the covariate age. Therefore, with the proportional hazards assumption met, 

the results from the age cause-specific model were acceptable too. 

4.3.2. HIV Status as a Time-varying Covariate 

Since the HIV status covariate did not satisfy the proportional hazard assumption, one of the 

reasons could have been that HIV status was a time-varying covariate. In order to verify this, 

another Cox model was specified with HIV status as a time-varying covariate interacting with 

analysis time. The following results were yielded: 
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Table 12: Patient’s HIV status as a time-varying covariate 

Model Hazard 

Ratio 

95% CI P-Value 

Main: HIV Negative (Reference: HIV 

Positive) 

3.05 1.71, 5.44         

Time-Varying: 

HIV Negative 

0.81 0.70, 0.94 0.005 

 

The estimated hazard ratios in Stata are split into two categories; those for constant-with-time 

variable (main) and those for time-varying covariate. From the table, the hazard ratio 

0.81(95% CI: 0.70, 0.94) can be interpreted that the HIV negative patients had their hazard of 

encountering hospital discharge decreased with survival time. The patient’s HIV status and 

survival time interacted significantly. 

4.3.3. Testing the Proportional Hazards Assumption for the Cause-Specific Models of 

the Competing Event Death 

Two sets of cause-specific models were fit in sections 4.2.4 and 4.2.5. The failure event was 

death in hospital. The first set comprised three unadjusted models and the second set was for 

adjusted cause-specific. Firstly, the proportion assumption tests for unadjusted models are 

presented followed by the test results for adjusted models. Table 13; show the proportional 

hazards assumption test for all the three unadjusted models. From this, it can be concluded 

that all models fully satisfied the proportional hazards assumption. With that met, it means all 

the interpretations made about these models were valid and statistically accurate.  
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Table 13: The proportional hazards assumptions test for the unadjustedcause-specific hazard 

(CSH) Cox models. 

CSH Model Chi-Square DF P-Value 

HIV Status 2.90 1 0.089 

Patient’s Sex 0.43 1 0.513 

Age 0.05 1 0.819 

 

Table 14 presents the estimates obtained when proportional hazards assumption was tested 

for all the adjusted cause-specific models. The figures in table 14 are from global tests only. 

Table 14: Proportional hazards assumption test for the adjusted cause-specific hazard (CSH) 

Cox models 

CSH Model Chi-Square DF P-Value 

HIV Status 3.22 3 0.358 

Patient’s Sex 3.22 3 0.358 

Age 3.22 3 0.358 

 

The p-value figures obtained indicates that the proportional hazard assumption was met. With 

the proportional hazards assumption met, the results from the adjusted cause-specific are 

statistically viable. 

4.3.4. Checking the Goodness-of-Fit Using Cox-Snell Residuals Method 

All the cause-specific hazard models presented earlier had to be screened for goodness-of-fit. 

All of them alsomet the proportional hazards assumption except for the unadjusted HIV 

status model with the event ‘discharge from hospital’ whose results were presented in table 

5.This model was then followed up by fitting HIV status as a time-varying covariate. 
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Goodness-of-fit as part of the objectives of this study, it was important to establish whether 

the cause-specific hazard models fitted the data perfectly, or at least up to a passable level.  

The cumulative hazard function of the Cox-Snell residuals was obtained. Then the 

cumulative hazard function of the Cox-Snell residuals was plotted against Nelson-Aalen 

cumulative hazard function. Figures 9 to 14 shows the graph obtained after fitting these 

functions: 

 

Figure 9: Cox-Snell Residual plot for patient’s HIV status and event ‘Discharge’ 

Although the proportional hazard assumption was violated by the HIV status model, the 

model fitted the data well by looking at how close the Cox Snell residual and Nelson-Aalen 

hazard curve were. 
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Figure 10: Cox-Snell Residual plot for patient’s age and event ‘Discharge’ 

 

Figure 11: Cox-Snell Residual Plot for patient’s Sex and event ‘Discharge’ 

After looking and the Cox-Snell residual plots for the models with the outcome event death in 

hospital, further goodness-of-fit assessment was done for the competing event death. 
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Figure 12: Cox-Snell Residual Plot for patient’s HIV status and competing event ‘Death’ 

 

Figure 13: Cox-Snell Residual plot for patient’s age and competing event ‘Death’ 
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Figure 14: Cox-Snell Residual plot for patient’s sex and competing event ‘Death’ 

The Nelson-Aalen cumulative hazard curve plot was checked whether it was linear through 

the origin with a slope 1 as it was the case with the Cox-Snell residual function. From figures 

9 to 14, it was observed that all models fitted the data quite well. Substantial deviations were 

only observed in figure 13 where patient’s age seem to encompass some outlier records. This 

model fit perfectly up to slightly beyond where Cox-Snell residuals were 0.15. Beyond that 

point; there was gross departure of the Nelson-Aalen function from Cox-Snell residual 

function. This meant that observations with higher values made the model not to fit the data 

well. In other words, the presence of high valued subjects such as the outliers in the dataset 

created undesirable effects on the fitted model.  
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4.4. Discussion of the Results 

The results showed how the complement of Kaplan-Meier,     , produced higher 

estimates as compared to nonparametric cumulative incidence function. At the very 

beginning the      and the cumulative incidence curve produced similar estimates. But as 

time went on and as some patients experienced death instead of being discharged from 

hospital,      ended up right-censoring those observation hence higher estimates. This 

led to      deviating from the nonparametric cumulative incidence function. In an event 

where competing risks are not present,      and nonparametric cumulative incidence are 

expected to theoretically produce same estimates. There curves are expected to superimpose. 

But in this case where there was death in hospital as a competing event, the best model to 

estimate probability that a particular event has occurred before a given time was definitely the 

nonparametric cumulative incidence function. Pepe and Mori test provided a comparison test 

for the groups’ cumulative incidences. In Stata and using pepemori ado file written by 

Coviello (2004), the Pepe and Mori test automatically provides the comparison tests for both 

the estimated curves in the event of interest setting and for the same curves in the competing 

events setting without a user bothering to execute another command. 

The cause-specific hazards models are best set when the assumption is that all failure events 

are independent. No testwas found set to specifically test this assumption. The cause-specific 

hazards also censors the other events not specified as failure events. A good way to contest 

theindependence of event assumptionwas by following up the cause-specific hazards with 

subdistribution hazards since the subdistribution hazards did not assume independence of 

events by censoring competing events. The subdistribution hazards regression is basically 

competing risk regression by the method of Fine and Gray (1999). The estimates obtained by 

the subdistribution hazards were very close to those obtained by cause-specific hazards in this 
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thesis. The main reason why the results from cause-specific hazard and subdistribution 

hazard were close was that the event of interest hospital discharge was happening by far more 

frequently than the competing event death. The closeness of the results between these two 

models can also crudely guarantee the independence of events assumption that is pre-packed 

with the cause-specific hazards. For this reason, the cause-specific hazards implemented in 

the analysis were just enough without further obtaining the subdistribution hazards estimates. 

However it has to be mentioned here that the choice between cause-specific hazards and 

subdistribution hazards greatly depends on the objectives of the study (Lau et al, 2009). If the 

interest is to see the biological mechanism of an intervention or any other covariate, the 

model to go for would be cause-specific hazards. If the study objective is to see the 

probability of an event in the presence of competing risk, then the subdistribution hazards 

models are better placed. For this study, the objectives centred on probability of hospital 

discharge, therefore the subdistribution hazards were better placed. 

Testing the assumptions behind the models was done to ensure that the estimates obtained by 

the fitted models carried water. Ignoring the test for proportional hazards assumption can cost 

dearly on the creditability of the results.  

Finally, testing the goodness-of-fit of the models assessed the extent to which the models 

fitted the observations. The Cox-Snell residuals plot was used to test on how well the model 

fitted the observations. The estimated Nelson-Aalen cumulative hazard function and the 

partial Cox-Snell residuals were obtained. The Nelson-Aalen cumulative hazard was 

compared to the linear residual plot with slope 1. Departures from the linear line are supposed 

to indicate possible lack of fit in the results. However, it has to also be mentioned that when 

plotting Nelson-Aalen cumulative hazard estimator for Cox-Snell residuals, even if there is a 

well-fitting Cox model, some variability about the 45
0 

line is expected, particularly in the 
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right-hand tail (Machin et al, 2006). This is because of the effective sample caused by prior 

failure and censoring. 

The nonparametric Cumulative Incidence Function showed that given any dayfemale patients 

were more likely to be discharged and less likely to die in hospital in comparison to the male 

patients. The unadjusted cause-specific hazard for males showed 26% less hazard of 

encountering hospital discharge than their female counterparts. Another notable result is that 

of HIV positive patients survivorship compared to the survivorship of HIV negative patients. 

The nonparametric Cumulative Incidence Function showed that HIV positive patients were at 

a greater risk of dying in hospital and lower risk of being discharge in hospital as compared 

to the HIV negative patients. The cause-specific hazards model estimated the risk hazard of 

dying in hospital for the HIV negative patients around 70% less than that of the HIV positive 

patients. This is noticeably a high difference and calls for further epidemiological research. 

There could more reasons as to why the risk difference was this big. For the cause-specific 

hazard, patient HIV status did not meet the proportional hazards assumption. Fitting it as 

time-varying explanatory variable it came out significant with a hazard ratio of 0.81. This 

meant that the length of hospital stay and hospital discharge interacted significantly.Other 

important patients’ characteristics like the HIV stage and body mass index could have 

possibly explained further why the difference was this big. Unfortunately these characteristics 

were not captured in the SPINE dataset used in this thesis. 
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CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 

This chapter gives a summary of the study, outlines some of the recommendations for 

analysis of survival data when competing risks are present and also highlights some of the 

limitations of the study. 

5.1. Concluding Remarks 

It has been shown in this thesis how      produces exaggerated results as compared to the 

nonparametric cumulative incidence function when competing risks are available. The 

cumulative incidence estimates of      were a little larger than those obtained from 

fitting cumulative incidence function. This was the case because      treated the 

competing event death in the same fashion as the censored observation. However, the 

estimates of      were not awkwardly different from those of cumulative incidence 

function. This was so because patients were being discharged from hospital much more 

frequently than they were dying in hospital within the 7 day follow-up period. The 

nonparametric cumulative incidence function was settled for as a better estimator of 

survivorship since effect of death on estimating the probability of being discharged before a 

given day was nevertheless present.  

The cause-specific hazard model estimates showed the prognostic effect of the covariates and 

were close to those obtained by the subdistribution hazards. The closeness of the cause-

specific and subdistribution hazards was greatly attributed to the high rate occurrence of 

hospital discharge as compared to the competing event death. Again this meant that death in 

hospital had a reduced effect on the estimation of the hazard of being discharged from 

hospital given a follow up period of 7 days. 
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In an event like this where estimates from the cause-specific hazards and subdistribution 

hazards produces very close results; the choice of models to go for would greatly depend on 

the specific study objectives (Lau et al, 2009). As Lim et al (2010) put it, the advantages of 

cause-specific hazards is that they are more clinically understandable when assessing the 

prognostic effect of the covariates on a specific cause because it can be observed whether the 

covariate is reducing or increasing the instantaneous probability of the event of interest 

irrespective of other covariate effect. In this thesis, the subdistribution hazards are 

recommended as the interest was more on estimating the probability of being discharged 

from hospital given that others were dying in it. In this setting, the subdistribution hazards 

provided a check of the effect of the competing risk death when estimating the likelihood of 

being discharged in hospital. Nevertheless, it was concluded that it was important to follow 

up cause-specific hazards with subdistribution hazards as the subdistribution hazards might 

confirm or deny that the effect competing event on the estimation of the hazard of the event 

of interest. 

The Nelson-Aalen cumulative hazard estimator for Cox-Snell residuals showed that models 

fitted the data well. A few deviations from the 45
0 

were noted. However, even if the model 

indeed fit well, some departure from the 45
0 

is not uncommon (Machinet al, 2006). This is 

because of the effective sample caused by prior failure and censoring. 

In the analysis of competing risk data, it is important to present both the results of the event 

of interest and the results of competing risks. This ensures a balance of information when 

discussing study results and avoids overlooking the important features which may influence 

the interpretation of results. 

Since the patients diagnosed HIV negative and the female patients were found to be more 

likely discharged from hospital within a short time, it is concluded that these were important 
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factors in determining time in hospital until discharged. The cause-specific hazards model 

estimated the risk hazard of dying in hospital for the HIV negative patients around 70% less 

than that of the HIV positive patients. This is noticeably a high difference and calls for 

further epidemiological research. The study also recommends further investigation on the 

disease specific survivorship of in-patients. In this case the interest would time to discharge 

for in-patients suffering from a particular disease such as malaria or tuberculosis other than 

an ICD-10 class of diseases. 

5.2. Study Limitations 

The patients’ hospital survival results obtained in this study may have limited clinical use 

mainly because the QECH SPINE dataset did not capture other important variables such as 

patient’s weight, height, HIV stage, literacy levels and household income which could have 

also possibly explained the health outcomes. 

 

 

 

 

 

 

 

 

  



 

60 
 

REFERENCES 

Armitage, P., G, Berry, &J. N. S. Matthews. (2002). Statistical Methods in Medical 

Research(4th ed.). New York, NY: Blackwell Publishing 

Brar, S. S., (2008). Estimation of Cumulative Incidence in the Presence of Competing Risks: 

Application to Clinical Oncology. (Master’s Thesis, University of Calgary). Retrieved from: 

dspace.ucalgary.ca/bitstream/1880/46804/1/Brar_2008.pdf 

Caplan R. S., Pajak T. F., & Cox J. D. (1994). Analysis of the Probability and Risk of Cause-

Specific Failure.International Journal of Radiation Oncology, 29, 1183 – 1186. 

Cleves, M., W. Gould, R. G. Gutierrez, & V. Y. Marchenko.  (2010). An Introduction to 

Survival Analysis Using Stata(3rd ed.). Texas, United States: Stata Press Publication, College 

Station. 

Cleves, A. M. (1999). Ssa13: Analysis of multiple failure-time data with Stata. Stata 

technical bulletin, 4, 30 – 39. 

Coviello, V., & Boggess, M. (2004). Cumulative Incidence Estimation In the Presence of 

Competing Risks.The Stata Journal, 4, 103 – 112. 

Dinse, G. E.,& Larson, M. G. (1986). A note on semi-Markov models for partiallycensored 

data. Biometrika, 73: 379–386. 

Fermanian, J. D. (2003). Nonparametric estimation of competing risks models with 

covariates. Journal of Multivariate Analysis,85, 156 – 191. 

Fine, J. P., & R. J. Gray.(1999). A proportional hazards model for the subdistribution of 

competing risk. Journal of American Statistical Association, 94, 496 – 509. 

Gooley, T. A., Leisenring, W., Crowley, J., & Storer, E. B. (1999). Estimation of Failure 

probabilities in the Presence of Competing Risks: New Representation of Old Estimators. 

Statistics in Medicine Journal, 18, 695 – 706. 

Hosmer, D. W., & Lemeshow, S., (2000). Applied Regression Analysis.United States: John 

Wiley and Sons,  

Kaplan, E. I., & Meier P. (1958). Nonparametric Estimation from Incomplete 

Observations.Journal of American Statistics Association, 53, 457 – 481. 

Kim, H. T., (2007). Cumulative Incidence in Competing Risks Data and Competing Risks 

Regression Analysis.American Association for Cancer Research, 13(2). 

Kleinbaum, D. G., & Klein, M. (2005).Survival Analysis, A Self-Learning Text (2nd edition). 

233 Spring street, New York, N.Y.: Springer Science and Business Media, Inc.  

Lau, B., Cole, S. R., & Gange, S. J., (2009). Competing Risk Regression Models for 

Epidemiologic Data.American Journal of Epidemiology, 170(2), 244-256 



 

61 
 

Lim, H. J., Zhang, X., Dyck, R., & Osgood, N., (2010). Methods of Competing Risks 

Analysis of End-stage Renal Disease and Mortality among People with Diabetes.BMC 

Medical Research Methodology, 10, 97. 

Lin, D. Y. (1997). Nonparametric Inference for cumulative functions in competing risks 

studies. Statistics in Medicine, 16, 901 – 910. 

Lin, D. Y., & L. J. Wei. (1989). The robust inference for the Cox proportional hazards model. 

Journal of the American Statistical Association, 8, 1074 – 1078. 

Machin, D., Cheung, Y. B., & Parmar, M. K. B. (2006). Survival Analysis: A Practical 

Approach (2nd ed). United States: John Wiley and Sons, Ltd. 

Marubini E., & Valsecchi, M. G. (1998). Analysing Survival Data from Clinical Trialsand 

Observational Studies. New York, N. Y.: John Wiley and Sons, Ltd. 

Nelson, W. (1982). Applied Life Data Analysis. Canada: John Wiley and Sons, Inc.  

Pepe, M. S., &Mori, M. (1993). Kaplan-Meier, Marginal or Conditional Probability Curves in 

Summarizing Competing Risks Failure Time Data? Journal of Statistics in Medicine, 12, 737 

– 751. 

Pintilie, M. (2006).Competing Risks: A Practical Perspective.The Atrium, Southern Gate, 

Chichester, West Sussex, England.: John Wiley and Sons Ltd.  

Satagopan J. M., Ben-Porat L., Robson, M., Kutler, D.,& Auerbach, A. D. (2004). A Note On 

Competing Risks in Survival Data Analysis. British Journal of Cancer, 91(7), 1229 – 1235. 

Tai, B., Wee, J., & Machin, D., (2011). Analysis and Design of Randomised Clinical Trials 

Involving Competing Risk Endpoints.Biomedical Central, 12, 127 

Vittinghoff, E., Glidden, D. V., Shiboski S. C., & MacCullochC. E.,(2005). Regression 

Methods in Biostatistics. California: Springer Science and Business Media, Inc. 

Wolbers, M., Koller, M. T., Wittemam, J. C., & Steyerberg, E. W., (2009). Prognostic 

Models with Competing Risks: Methods and Application to Coronary Risk Prediction. 

Lippincott Williams and Wilkins.Epidemiology, 20 

 

 


